• Title/Summary/Keyword: physical model investigation

Search Result 227, Processing Time 0.025 seconds

Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate (가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석)

  • Ko Seung-Won;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

Investigation of image preprocessing and face covering influences on motion recognition by a 2D human pose estimation algorithm (모션 인식을 위한 2D 자세 추정 알고리듬의 이미지 전처리 및 얼굴 가림에 대한 영향도 분석)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.285-291
    • /
    • 2020
  • In manufacturing, humans are being replaced with robots, but expert skills remain difficult to convert to data, making them difficult to apply to industrial robots. One method is by visual motion recognition, but physical features may be judged differently depending on the image data. This study aimed to improve the accuracy of vision methods for estimating the posture of humans. Three OpenPose vision models were applied: MPII, COCO, and COCO+foot. To identify the effects of face-covering accessories and image preprocessing on the Convolutional Neural Network (CNN) structure, the presence/non-presence of accessories, image size, and filtering were set as the parameters affecting the identification of a human's posture. For each parameter, image data were applied to the three models, and the errors between the actual and predicted values, as well as the percentage correct keypoints (PCK), were calculated. The COCO+foot model showed the lowest sensitivity to all three parameters. A <50% (from 3024×4032 to 1512×2016 pixels) reduction in image size was considered acceptable. Emboss filtering, in combination with MPII, provided the best results (reduced error of <60 pixels).

Aquatic Ecosystem Assessment and Habitat Improvement Alternative in Hongcheon River using Fish Community (어류군집을 이용한 홍천강의 수환경 평가 및 서식처 개선방안)

  • Kang, Hyeongsik;Hur, Jun Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5B
    • /
    • pp.331-343
    • /
    • 2012
  • In this study, the site investigation for fish was performed in the 15 km of Hongcheon river including Oancheon stream. The river ecosystem health was evaluated using the field data for fish. The field survey was carried out at 9 sites, 4 times from August to November 2011. The ecological diversity, including dominance, evenness, and richness and the ecological health using IBI and QHEI were evaluated. The result shows that the mean IBI in the 9 sites is in good-common condition, but the downtown section has a common-worse condition. The result evaluated by QHEI shows optimum-good condition. Also, the habitat suitability index for Pseudopuntungia tenuicorpa, which is one of endangered species, was evaluated, and then the environment flow was calculated by using the PHABSIM model. The previous research in the literature reports that Acheilognathus signifer, one of the endangered species, inhabited in Hongchen river. However, the existence of Acheilognathus signifer was not found in the recent research and this study. Thus, the physical habitat condition for Acheilognathus signifer was evaluated using the field data in the previous study. Also, the habitat improvement for Acheilognathus signifer in Hongcheon river was proposed.

Physical properties and intracellular uptake of polyethyleneglycol-incorporated cationic liposomes (폴리에틸렌글리콜이 도입된 양이온성 리포솜의 물리적 특성 및 세포이입효과)

  • Jung, Soon-Hwa;Jung, Suk-Hyun;Kim, Sung-Kyu;Seong, Ha-Soo;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • Liposomes as one of the efficient drug carriers have some shortcomings such as their short circulation time, fast clearance from human body by reticuloendothelial system (RES) and limited intracellular uptake to target cell. In this study, polyethylenglycol (PEG)-incorporated cationic liposomes were prepared by ionic complexation of positively charged liposomes with carboxylated polyethyleneglycol (mPEG-COOH). The cationic liposomes had approximately $98.6{\pm}1.0nm$ of mean particle diameter and $42.8{\pm}0.8mV$ of zeta potential value. The PEG-incorporated cationic liposomes had $110.1{\pm}1.2nm$ of mean particle diameter with an increase of about 10 nm compared to the cationic liposomes. Zeta potential value of them was $12.9{\pm}0.6mV$ indicating 30mV decrease of cationic charge compared to the cationic liposomes. The amount of PEG which was incorporated onto the cationic liposomes was assayed by using picrate assay method and the incorporation efficiency was $58.4{\pm}1.1%$. Loading efficiency of model drug, doxorubicin, into cationic liposomes or PEG-incorporated cationic liposomes was about $96.0{\pm}0.7%$. Results of intracellular uptake which were evaluated by flow cytometry analysis of doxorubicin loaded liposomes showed that intracellular uptake of PEG-incorporated cationic liposomes was higher than the cationic liposomes or DSPE-mPEG liposomes. In addition, cytotoxicity of PEG-incorporated cationic liposomes was comparable to cationic liposomes. Consequently, the PEG-incorporated cationic liposomes of which surface was incorporated with PEG by ionic complex may be applicable as anticancer drug carriers that can increase therapeutic efficacy.

Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions (폴리에틸렌옥사이드 수용액의 동적 점탄성)

  • Song, Ki-Won;Bae, Jun-Woong;Chang, Gap-Shik;Noh, Dong-Hyun;Park, Yung-Hoon;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.4
    • /
    • pp.295-307
    • /
    • 1999
  • Using a Rheometries Fluids Spectrometer (RFS II), the dynamic viscoelastic properties of aqueous poly(ethylene oxide) (PEO) solutions in small amplitude oscillatory shear flow fields have been measured over a wide range of angular frequencies. The angular frequency dependence of the storage and loss moduli at various molecular weights and concentrations was reported in detail, and the result was interpreted using the concept of a Deborah number De. In addition, the experimentally determined critical angular frequency at which the storage and loss moduli become equivalent was compared with the calculated characteristic time (or its inverse value), and their physical significance in analyzing the dynamic viscoelastic behavior was discussed. Finally, the relationship between steady shear flow and dynamic viscoelstic properties was examined by evaluating the applicability of some proposed models that describe the correlations between steady flow viscosity and dynamic viscosity, dynamic fluidity, and complex viscosity. Main results obtained from this study can be summarized as follows: (1) At lower angular frequencies where De<1, the loss modulus is larger than the storage modulus. However, such a relation between the two moduli is reversed at higher angular frequencies where De>l, indicating that the elastic behavior becomes dominant to the viscous behavior at frequency range higher than a critical angular frequency. (2) A critical angular frequency is decreased as an increase in concentration and/or molecular weight. Both the viscous and elastic properties show a stronger dependence on the molecular weight than on the concentration. (3) A characteristic time is increased with increasing concentration and/or molecular weight. The power-law relationship holds between the inverse value of a characteristic time and a critical angular frequency. (4) Among the previously proposed models, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. The Osaki relation can be regarded to some extent as a suitable model. However, the DeWitt, Pao and HusebyBlyler models are not applicable to describe the correlations between steady shear flow and dynamic viscoelastic properties.

  • PDF

Image Quality and Dose Assessment According to Examination Mode during Head CT Examination (두부 CT 검사 시 검사 모드에 따른 화질 및 선량평가)

  • Gang, Heon-Hyo;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.437-444
    • /
    • 2021
  • To evaluate the usefulness of Volume Axial Mode by comparing analyzing the exposure dose of the patients and the quality of each images from CT images obtained from high pitch mode using the local phantom or volume axial mode to determine the usefulness of he volume axial mode in diagnosing the head and cervical disease in adults. High Pitch Mode, Helical Mode, and Volume axial Mode as adult phantom were tested according to 70 kVp, 80 kVp, and 100 kVp tube voltages during an adult frontal CT scans. The equipment used was GE's Revolution (GE Healthcare, Wisconsin USA) model and iMED X-ray Phantom. The exposure dose of phantom was compared using the images obtained from each protocol, and the image quality was compared by calculating SNR and CNR by setting ROI on each image. When examined using Volume Axial Mode, the exposure dose of phantom was measured 17.12% lower than Helical Mode, 5.35% lower than High Pitch Mode, and both SNR and CNR were improved. Volume Axial Mode is a useful test that reduces investigation time without table movement using high speed rotary scanner, and in which exposure dose is reduced and image quality is improved by acquiring images in a short time of 0.28 seconds of phantom than using High Pitch Mode and Helical Mode. In addition, the fast testing time of Volume Axial Mode can be seen as the biggest advantage CT scans of emergency patients or patients with physical discomfort.

Crossplot Interpretation of Electrical Resistivity and Seismic Velocity Values for Mapping Weak Zones in Levees (제방의 취약구간 파악을 위한 전기비저항과 탄성파속도의 교차출력 해석)

  • Cho, Kyoung-Seo;Kim, Jeong-In;Kim, Jong-Woo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.507-522
    • /
    • 2021
  • Specific survey objectives often cannot be met using only one geophysical method, as each method's results are influenced by the specific physical properties of subsurface materials. In particular, areas susceptible to geological hazards require investigation using more than one method in order to reduce risks to life and property. Instead of analyzing the results from each method separately, this work develops a four-quadrant criterion for classifying areas of levees as safe or weak. The assessment is based on statistically determined thresholds of seismic velocity (P-wave velocity from seismic refraction and S-wave velocity from multichannel analysis of surface waves) and electrical resistivity. Thresholds are determined by subtracting the standard deviation from the mean during performance testing of this correlation technique applied to model data of four horizontal and inclined fracture zones. Compared with results from the crossplot of resistivity and P-wave velocity, crossplot analysis using resistivity and S-wave velocity data provides more reliable information on the soil type, ground stiffness, and lithological characteristics of the levee system. A loose and sandy zone (represented by low S-wave velocity and high resistivity) falling within the second quadrant is interpreted to be a weak zone. This interpretation is well supported by the N values from standard penetrating test for the central core.

Reexamination of Coach-Athlete Relationship Maintenance Scale in Pro Baseball (프로야구 코치-선수관계 유지 척도 재검증)

  • Huh, Jin-Young;Choi, Hun-Hyuk
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.1
    • /
    • pp.221-233
    • /
    • 2016
  • The purpose of this study was to prove a development and initial validation of the korean version of coach-athlete relationship maintenance scale that originated from the work of Rhind & Jowett(2012) in pro baseball. The items were then administered to 132 Participants(29 coaches and 103 athletes) completed the questionnaires of the coach-athlete relationship maintenance in First preliminary investigation. Maximum likelihood estimate was used to identify the latent underlying structure. In order to verify the validity of Korean version of coach-athlete relationship maintenance was administered to an independent sample of 273 coaches and athletes. Pro baseball coach-athlete relationship maintenance is consisted of six factors(25 items) with conflict management, motivational, preventative, openness/assurance, support, and social network. SPSS18.0 and AMOS16.0 were used to analyze the exploratory factor analysis, confirmatory factory analysis and internal consistency, test-retest with bootstrapping using of the data in this study. The results of the pro baseball coach-athlete relationship maintenance scale had six factors with 25 items, and each six factor was positively correlated. Overall, this study verified pro baseball coach-athlete relationship maintenance questionnaire. Thus, suggest that path of comparing the differences between the first division and farm team by using the test of the structural model invariance across the groups.

Assessing Risks and Categorizing Root Causes of Demolition Construction using the QFD-FMEA Approach (QFD-FMEA를 이용한 해체공사의 위험평가와 근본원인의 분류 방법)

  • Yoo, Donguk;Lim, Nam-Gi;Chun, Jae-Youl;Cho, Jaeho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.417-428
    • /
    • 2023
  • The demolition of domestic infrastructures mirrors other significant construction initiatives in presenting a markedly high accident rate. A comprehensive investigation into the origins of such accidents is crucial for the prevention of future incidents. Upon detailed inspection, the causes of demolition construction accidents are multifarious, encompassing unsafe worker behavior, hazardous conditions, psychological and physical states, and site management deficiencies. While statistics relating to demolition construction accidents are consistently collated and reported, there exists an exigent need for a more foundational cause categorization system based on accident type. Drawing from Heinrich's Domino Theory, this study classifies the origins of accidents(unsafe behavior, unsafe conditions) and human errors(human factors) as per the type of accidents experienced during demolition construction. In this study, a three-step model of QFD-FMEA(Quality Function Deployment - Failure Mode Effect Analysis) is employed to systematically categorize accident causes according to the types of accidents that occur during demolition construction. The QFD-FMEA method offers a technique for cause classification at each stage of the demolition process, including direct causes(unsafe behavior, unsafe environment), and human errors(human factors) through a tri-stage process. The results of this accident cause classification can serve as safety knowledge and reference checklists for accident prevention efforts.

Rendezvous Mission to Apophis: IV. Investigation of the internal structure - A lesson from an analogical asteroid Itokawa

  • Jin, Sunho;Kim, Yaeji;Jo, Hangbin;Yang, Hongu;Kwon, Yuna G.;Ishiguro, Masateru;Jeong, Minsup;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.58.1-59
    • /
    • 2021
  • Exploration of asteroids' internal structure is essential for understanding their evolutional history. It also provides a fundamental information about the history of coalescence and collision of the solar system. Among several models of the internal structures, the rubble-pile model, confirmed by the near-Earth asteroid (25143) Itokawa by Hayabusa mission [1], is now widely regarded as the most common to asteroids with size ranging from 200 m to 10 km [2]. On the contrary, monolithic and core-mantle structures are also possible for small asteroids [3]. It is, however, still challenging to look through the interior of a target object using remote-sensing devices. In this presentation, we introduce our ongoing research conducted at Seoul National and propose an idea to infer the internal structure of Apophis using available instruments. Itokawa's research provides an important benchmark for Apophis exploration because both asteroids have similar size and composition [4][5]. We have conducted research on Itokawa's evolution in terms of collision and space weathering. Space weathering is the surface alteration process caused by solar wind implantation and micrometeorite bombardment [6]. Meanwhile, resurfacing via a collision acts as a counter-process of space weathering by exposing fresh materials under the matured layer and lower the overall degree of space weathering. Therefore, the balance of these two processes determine the space weathering degrees of the asteroid. We focus on the impact evidence on the boulder surface and found that space weathering progresses in only 100-10,000 years and modifies the surface optical properties (Jin & Ishiguro, KAS 2020 Fall Meeting). It is important to note that the timescale is significantly shorter than the Itokawa's age, suggesting that the asteroid can be totally processed by space weathering. Accordingly, our result triggers a further discussion about why Itokawa indicates a moderately fresh spectrum (Sq-type denotes less matured than S-type). For example, Itokawa's smooth terrains show a weaker degree of space weathering than other S-type asteroids [7]. We conjecture that the global seismic shaking caused by collisions with >1 mm-sized interplanetary dust particles induces granular convection, which hinders the progression of space weathering [8]. Note that the efficiency of seismic wave propagation is strongly dependent on the internal structure of the asteroid. Finally, we consider possible approaches to investigate Apophis's internal structure. The first idea is studying the space weathering age, as conducted for Itokawa. If Apophis indicates a younger age, the internal structure would have more voids [9]. In addition, the 2029 close encounter with Earth provides a rare natural opportunity to witness the contrast between before and after the event. If the asteroid exhibits a slight change in shape and space weathering degree, one can determine the physical structure of the internal materials (e.g., rubble-pile monolithic, thick or thin regolith layer, the cohesion of the materials). We will also consider a possible science using a seismometer.

  • PDF