• Title/Summary/Keyword: physical and strength properties

Search Result 2,369, Processing Time 0.033 seconds

Physicochemical Changes in Tilapia Oreochromis niloticus Muscle Induced by Acclimation to Sea Water (해수순화에 따른 틸라피아 근육의 물리화학적 변화)

  • Hwang, Gyu-Chul;Yoon, Ho-Dong;Ji, Cheong-Il;Park, Jeong-Heum;Kim, Seong-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.185-190
    • /
    • 1993
  • Tilapia cultured in fresh water were acclimated in sea water with daily increase of $5%_{\circ}$ of salinity and it was completely terminated at the 7th day (0 week). Each three tilapia acclimated were examined weekly based from 0 week to elucidate changes of chloride cells in gill, mineral contents and physical properties in muscle and biochemical characteristics in myofibrils. Chloride cells existed in gills were gradually developed in number and size by acclimation to sea water and became to almost constant state at the third week. Shearing value, compressing strength and content of minerals such as Mg, Na and K in muscle were showed remarkable increase by acclimation to sea water in comparison to those of muscle from tilapia reared in fresh water. Myofibrillar $Mg^{2+}-,\;Ca^{2+}-$ and $K^+(EDTA)-ATPase$ activities of tilapia acclimated in sea water also increased showing significant statistic difference (p<0.01) from those of tilapia reared in fresh water However. thermostability of myofibrils was dropped by acclimation to sea water. The increase of shearing value and compressing strength in the muscle of tilapia by acclimation to sea water would be attributed to the increase of myofibrillar ATPase activities which act to accelerate the decomposition rate of ATP. Therefore, it is suggested that this phenomenon associated with muscle contraction could be brought an improvement of texture of tilapia acclimated in sea water.

  • PDF

Characteristics of Sedimented Sandy in Nackdong River Delta (낙동강 델타지역 퇴적사질토의 특성)

  • Kim, Byeong-Jun;Kim, Jae-Hong;Jung, Jin-Yeong;Kwon, Jeong-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.25-33
    • /
    • 2016
  • This study was a basic research to obtain the knowledge of physical properties of the upper sedimented sandy soil in the Nakdong river delta area. The characteristics of shear strength and permeability with fine content and relative density were also investigated. The upper sedimented sandy soil near paddy and lower soft clay layers showed high percentage of fine content, and the rest parts had about 5% of fine content. The specific gravity regardless of depth and location was almost constant. The upper sedimented sandy soil mostly had particle size about 0.1 ~ 0.4mm regardless of sedimentation environment and has illite, a clay mineral, in the entire soil samples. The results of direct shear tests on remolded specimens of the upper sedimented sandy soil revealed that the friction angle and cohesion increased with relative density, but its effect was not significant. The fine content was significant, that as increasing it, the friction angle decreased and cohesion increased linearly. The permeability decreased with relative density and fine content, and the permeability of soil containing more than 15% of fine content was independent on the relative density.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

Preparation and Biocompatibility of Medical Fiber from Novel Regenerated Cellulose from Styela clava tunic (미더덕껍질의 재생셀룰로오스를 이용한 의료용 섬유의 제조 및 생체적합성)

  • Song, Sung Hwa;Kim, Ji Eun;Choi, Jun Young;Park, Jin Ju;Lee, Mi Rim;Song, Bo Ram;Lee, Yechan;Kim, Hong Sung;Lee, Jae Ho;Lim, Yong;Hwang, Dae Youn;Jung, Young Jin
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.117-129
    • /
    • 2018
  • Cellulose has been widely applied into various medical fields including scaffolding, tissue engineering and tissue formation. In this study, we manufactured cellulose medical fiber from Styela clava tunics(SCT-CS) and analyzed the tensile strength, elongation at break, fluid uptake and surface morphology. And then, the biocompatibility and toxicity of SCT-CS were measured in Sprague-Dawley(SD) rats after the implantation for 30, 60 and 90 days. The level of tensile strength and fluid uptake were lower in SCT-CS than chromic catgut(CCG), while elongation at break level were maintained the higher in SCT-CS. Also, the roughness with pronounced surface patterns as a result of in vivo degradation was significantly greater in CCG than this of SCT-CS although these levels gradually appeared with time in both groups. After implantation for 90 days, SCT-CS and CCG was successfully implanted around muscle of thigh without any significant immune response. Furthermore, no significant alterations were measured in serum parameters and the specific pathological features induced by most toxic compounds for liver and kidney toxicity. Therefore, these results suggest that SCT-CS showing good biocompatibility and non-toxicity can be successfully prepared from cellulose powder of SCT as well as has the potential for use as a powerful biomaterial for medical sutures.

Physical and Chemical Properties of Cement Mortar with Gamma-C2S

  • Lee, Sung-Hyun;Kim, Kyungnam;Mabudo, Mabudo;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.194-199
    • /
    • 2016
  • Presently, for the cement industry, studies that seek to reduce $CO_2$, because of the development of the plastic industry and demand for reduction of energy use, have been actively conducted among them, studies attempting to use Gamma-$C_2S({\gamma}-C_2S)$ to fix $CO_2$ have been actively conducted. The ${\gamma}-C_2S$ compound has an important function in reacting to $CO_2$ and stiffening through carbonatization in the air. The ${\gamma}-C_2S$ compound, reacting to $CO_2$ in the air, generates $CaCO_2$ within the pore structure of cement materials and densifies the pore structure this leads to an improvement of the durability and to the characteristic of resistance against neutralization. Therefore, in this experiment, in order to synthesize ${\gamma}-C_2S$, limestone sludge and waste foundry sands are used these materials are plasticized for 30 or 60 minutes at $1450^{\circ}C$, and are prevented from being cooled in the temperature range of $30{\sim}1000^{\circ}C$ when they are about to be cooled. XRD analysis and XRF analysis are used to determine the effects of this process on ${\gamma}-C_2S$ synthesization, the temperature at which a thing is plasticized, and the conditions for cooling that obtain in the plasticized clinker also, in order to confirm the $CO_2$ capture function, analysis of the major hydration products is conducted through an analysis of carbonatization depth and compressive strength, and through MIP analysis and XRD Rietveld analysis. As a result of these analyses, it is found that when ${\gamma}-C_2S$ was synthesized, the clinker that was plasticized at $1450^{\circ}C$ for one hour demonstrated the highest yield rate the sample with which the ${\gamma}-C_2S$ was mixed generated $CaCO_3$ when it reacted with $CO_2$ therefore, carbonatization depth and porosity were reduced, and the compressive strength was increased.

Changes in rheological properties of packaged Kongdduck prepared with soybean flour and peanut flour during storage periods (콩가루 및 땅콩가루를 첨가한 콩떡의 포장 후 저장 중 물성 변화(2))

  • 정혜숙;김경자
    • Korean journal of food and cookery science
    • /
    • v.17 no.3
    • /
    • pp.204-210
    • /
    • 2001
  • Rice cakes were prepared by the addition of yellow soybean flour or peanut flour and packaged with $CO_2$-modified packaging(CMP) or vacuum packaging(VP), and their physical characteristics were monitored by sensory evaluation and mechanical measurement while storing for 6 days. For VP samples, yellow soybean rice cake showed little changes in cohesiveness, moistness and chewiness for 6 days of storage, while pure rice cake and peanut rice cake showed an increase in strength and hardness from the 4th day of storage. In case of CMP, yellow soybean rice cake hardly showed a difference in cohesiveness, moistness and chewiness for 6 days, while pure rice cake and peanut rice cake showed a significant difference from the 4th day in sensory evaluation. For rheometer measurement, yellow soybean rice cake with CMP or VP showed little changes in strength or hardness for 6 days, while peanut rice cake and pure rice cake showed a drastic decrease in cohesiveness from the 2nd day and adhesiveness from the 4th day of storage. As there was no remarkable difference or deterioration for 6 days of storage in yellow soybean rice cake between CMP and VP, the ingredients of rice cake appeared to be more important than the type of packaging in terms of the quality deterioration of rice cake.

  • PDF

Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Polymer Cement Mortar (폴리머 시멘트 몰타르 포장재용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성)

  • Lee, Bong-Kyu;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.789-794
    • /
    • 2012
  • For the purpose of development of the latex suitable for polymer cement mortar, experiments on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization were performed. Methyl methacrylate, methacrylic acid and acrylic acid were selected as carboxylic co-monomer, styrene and butadiene as monomer, sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate as anionic emulsifiers, and nonylphenoxy poly (ethyleneoxy) ethanol (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were also used as redox initiator, and sodium monohydrogen phosphate and potassium carbonate as electrolytes. The effects of categories and concentration of carboxylic co-monomer, molecular weight control agent, crosslinking agent, and styrene/butadiene monomer ratio on the characteristics of latex were investigated. Polymerization recipes for preparation of polymer cement mortar could be proposed. The prepared latexes were tested for the physical properties such as compressive and flexural strength when latexes were mixed with cement mortar. The results showed that the latex could be adapted to polymer cement mortar. Also, it was recognized that the compressive and flexural strength were exhibited 25.4% and 45.3% respectively higher improvement than the quality standards at 28 days curing time.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Examination of the Characteristics of Mortar Mixed with Boron Compounds Presenting Various Levels of Alkalinity (다양한 알칼리도를 가진 붕소화합물이 혼입된 모르타르의 특성 검토)

  • Lee, Binna;Lee, Jong-Suk;Min, Jiyoung;Lee, Jang Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.85-92
    • /
    • 2017
  • This study examines the characteristics of mortar mixed with various boron compounds. The adapted boron compounds, classified into acid, slightly alkaline and strongly alkaline with respect to the value of the pH are acid-based boron (AA), low-alkaline-based boron (AB), and high-alkaline-based boron (HB). The pH test, setting test and compressive strength test are performed to evaluate the physical and chemical properties of mortar, and SEM imaging is conducted to analyze the microstructure of mortar. The measured pH shows that the specimens mixed with boron compounds have lower pH than the basic mortar without boron and that loss of pH occurs according to time. The setting test reveals that the initial and final setting times of the specimens mixed with boron compounds occur later than the basic mortar, which disagrees slightly with the previous literature stating that the setting time can be shortened according to the alkalinity. From the compressive strength test and SEM imaging results, it is recommended to determine the optimal content of boron considering type and composition of the boron compounds.

Degradation of Natural Dyed Silk Fabrics under Ultraviolet Light(UV) -Focused on Gardenia and Sappanwood- (자외선에 의한 천연 염색 견직물의 취화 연구 -치자, 소목 염색을 중심으로-)

  • Shin, Youn-Sook;Choi, Seung-Youn
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.5 s.164
    • /
    • pp.659-669
    • /
    • 2007
  • The purpose of this study was to investigate the degradation of silk fabrics dyed with gardenia and sappanwood by Ultraviolet Light(UV). To asses the effect of uv on dyed silk fabrics, physical and chemical properties of samples were explored. K/S value rapidly decreased with increasing exposure time. Mordanting improved ultraviolet-cut ability and the sappanwood dyed samples were superior to those of gardenia dyed in ultraviolet-cut ability. Color progressively faded away as uv exposure time increased, accordingly, $L^*,\;a^*,\;b^*$, H/VC, ${\Delta}E$ were changed. Morphological change observed with SEM represented degradation of silk fabrics from the outer fibril to the inner fibril. Tensile Strength abruptly decreased as uv exposure time increased and the mordanted samples showed higher tensile strength than the unmordanted. FT-IR analysis confirmed that main peaks at 3297 and $1704cm^{-1}$ band for silk fabric were due to N-H and C=O stretching, gardenia peaks at 1654 and $668cm^{-1}$ band representing C=O(ester), C=C(alken) and O-C=O(carboxylic acids) of crocin and sappanwood peaks at $1715cm^{-1}$ band representing C=O(cyclic keton) of brazilin appeared on the samples exposed for 14 days, but these peaks indicating colorants after 28 days of uv exposure faded away due to prolonged exposure of uv.