• 제목/요약/키워드: physical & mechanical property

검색결과 368건 처리시간 0.028초

SenSation : A New Translational 2 DOF Haptic Device with Parallel Mechanism

  • Chung, Young-Hoon;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.217-222
    • /
    • 2001
  • We propose a new two-degree of freedom parallel mechanism for a haptic device and will refer to the mechanism as the SenSation. The SenSation is designed in order to improve the kinematic performanced and to achieve static balance. We use the panto graph mechanisms in order to change the location of active joints, which leads to transform a direct kinematic singularity into a nonsingularity. The direct kinematic singular configurations of the SenSation occur near the workspace boundary. Using the property that position vector of rigid body rotating about a fixed point is normal to the velocity vector, Jacobian matrix is derived. Using the vector method, two different types of singularities of the SenSation can be identified and we discuss the physical significance of each of the three types of singularities. We will compare the kinematic performances(force manipulability ellipsoid, kinematic isotropy) of the SenSation with those of five-var parallel mechanism. By specifying that the potential energy be fixed, the conditions for the static balancing of the SenSation is derived. The static balancing is accomplished by changing the center of mass of the links.

  • PDF

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

열동력 시스템 내부 열교환 표면의 클리닝에 관한 연구 (A study of cleaning of heat transfer surface in thermal power system)

  • 한규일
    • 수산해양기술연구
    • /
    • 제51권4호
    • /
    • pp.576-582
    • /
    • 2015
  • The efficiencies of thermal power system using fossil fuel depend on heat exchangers which extract energy from the exhaust gas before it is expelled to the atmosphere. To increase heat transfer efficiency it is very important to maintain the surface of heat exchanger as clean condition. The accepted skill of cleaning of fouled surface of heat exchanger is soot blowing. A high pressure jet of air is forced through the flat surface of plate to remove the deposit of fouling. There is, however, little knowledge of the fundamental principles of how the jet behave on the surface and how the jet actually removes the deposit. Therefore, the study focuses on the measuring of cleaning area and cleaning dwell time after accumulating the simulated deposit on the flat surface. The deposit test rig was built for the study and simulated deposit material is used after measuring the physical property of the each material by shearing stress test. Much data was obtained for the analysis by the parameters change such as the different jet speed, different inner pressure and variable distance of the jet from the test rig surface. The experimental data was compared with the theoretical equation and most of the data matches well except some extreme cases.

환경친화형 고고형분 자동차용 도료의 개발 (Development of Eco-Friendly High-Solids Paints for Automotive Coatings)

  • 박찬남;이원기;장성호
    • 한국환경과학회지
    • /
    • 제17권8호
    • /
    • pp.925-932
    • /
    • 2008
  • Manufactures of automotive repair finishes are tending to reduce more and more the level of volatile organic compounds (VOCs) in their paint processes in order to comply with increasingly strict environmental legislation. The production of high solids paints is a way to solve this problem. However, the application of high-solids paints is limited primarily by the viscosity of resin which is strongly related to painting ability: the higher solid content, the lower desired property. In this study, alkyl copolymer with low viscosity was synthesized by the introduction of the monomers with long-side chains and functional groups which improve flexibility and cross-linking density, respectively. The solid content of the paint prepared with the synthesized resin was 80wt% and its VOCs was reduced by 20%, compared to the commercialized paint. Also, the physical and mechanical properties of coatings on steel sheets were similar to commercialized one.

Assessment of concrete properties with iron slag as a fine aggregate replacement

  • Noufal, E. Rahmathulla;Kasthurba, A.K.;Sudhakumar, J.;Manju, Unnikrishnan
    • Advances in concrete construction
    • /
    • 제9권6호
    • /
    • pp.589-596
    • /
    • 2020
  • In an effort to find alternate, environment friendly and sustainable building materials, the scope of possible utilization of iron slag (I-sand), generated as a by-product in iron and steel industries, as fine aggregates in reinforced cement concrete (RCC) made with manufactured sand (M-sand) is examined in this manuscript. Systematic investigations of the physical, mechanical, microstructural and durability properties of I-sand in comparison with RCC made with M-sand have been carried out on various mix designs prepared by the partial/full replacement of I-sand in M-sand. The experimental results clearly indicate the possibility of utilizing iron slag for preparing RCC in constructions without compromising on the property of concrete, durability and performance. This provides an alternate possibility for the effective utilization of industrial waste, which is normally disposed by delivering to landfills, in building materials which can reduce the adverse environmental effects caused by indiscriminate sand mining being carried out to meet the growing demands from construction industry and also provide an economically viable alternative by reducing the cost of concrete production.

복합가공사를 이용한 Wool-like 직물의 역학적성질 (The Mechanical Propertis of Wool-like Fabrics Using Composite Textured Yarn)

  • 박명수;윤종호
    • 한국의류산업학회지
    • /
    • 제5권4호
    • /
    • pp.408-412
    • /
    • 2003
  • The micro structure of POY was modified and a wool-like touch yarn of composite fibers with different shrinkage was made. With this yarn 12 different fabrics with wool like touch were prepared. The characteristic physical property changes of the fabrics examined are as follows: 1. In all cases, the initial high shrinkage stages were observed in hot water treatment and the 3D images of complex multilayer of typical doubling fibers with different shrinkage were also observed in hot air treatment of 170C. 2. The tensile strength changes of satin and plain fabrics with the change of twist count showed similar behavior. However, WT's were slightly higher and RT's was lower in twill and satin fabrics than those in plain fabric. 3. Since a slight decrease of B's of twill fabric found with increasing twist count under given experimental condition, it could be influenced on the anti-drape stiffness was decreased and flexibility was increased. 4. A significant decrease of G values was observed in the twist count 800-1000 T.P.M However, in the twist count higher than 1000 T.P.M G values observed were kept nearly constant. 5. MIU of plain and twill fabrics showed a drastic decrease at the twist count higher than 1000 T.P.M.

변형률속도를 고려한 상온 나노임프린트 공정의 유한요소해석 (Finite Element Analysis of the Room Temperature Nanoimprint Lithography Process with Rate-Dependent Plasticity)

  • 송정한;김승호;;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.63-66
    • /
    • 2005
  • Nanoimprint lithography (NIL) process at room temperature has been newly proposed in recent years to overcome the shape accuracy and sticking problem induced in a conventional NIL process. Success of the room temperature NIL relies on the accurate understand of the mechanical behavior of the polymer. Since a conventional NIL process has to heat a polymer above the glass transition temperature to deform the physical shape of the polymer with a mold pattern, viscoelastic property of polymer have major effect on the NIL process. However, rate dependent behavior of polymer is important in the room temperature NIL process because a mold with engraved patterns is rapidly pressed onto a substrate coated with the polymer by the hydraulic equipment. In this paper, finite element analysis of the room temperature NIL process is performed with considering the strain rate dependent behavior of the polymer. The analyses with the variation of imprinting speed and imprinting pattern are carried out in order to investigate the effect of such process parameters on the room temperature NIL process. The analyses results show that the deformed shape and imprint force is quite different with the variation of punch speed because the dynamic behavior of the polymer is considered with the rate dependent plasticity model. The results provide a guideline for the determination of process conditions in the room temperature NIL process.

  • PDF

이온교환에 의한 칼슘알지네이트 섬유의 제조 (Preparation of Calcium Alginate Fiber by Ion Exchange)

  • 손태원;이민경;한송정
    • 한국염색가공학회지
    • /
    • 제23권1호
    • /
    • pp.51-59
    • /
    • 2011
  • Calcium alginate fiber were prepared by wet spinning of various conditions, including different concentrations of sodium alginate solution and $CaCl_2$ concentrations for coagulating the fiber through an absorption of calcium ion. The absorption of calcium ion during the coagulating step lead to solidify the fibers by the replacement of sodium ion with calcium ion to produce some crosslinking. The concentration of calcium ion in the calcium alginate fiber seems to be well related to the mechanical and physical property of the fiber, such as fiber strength moisture regain, and degree of swelling. The tensile strength of calcium alginate fiber was increased along with the increasing amount of sodium alginate solution. According to EDS analysis, 7 wt% $CaCl_2$ coagulation bath resulted in more calcium ion in the fiber compared to 3 wt% $CaCl_2$ coagulation bath. The decomposition temperature of calcium alginate fiber was $199^{\circ}C$, which $14^{\circ}C$ higher than that of sodium alginate.

구리 박막의 표면형상과 물성에 대한 전류밀도 영향 (Property and Surface Morphology of Copper Foil on the Current Density)

  • 우태규;박일송;정광희;설경원
    • 한국재료학회지
    • /
    • 제20권10호
    • /
    • pp.555-558
    • /
    • 2010
  • This study examined the effect of current density on the surface morphology and physical properties of copper plated on a polyimide (PI) film. The morphology, crystal structure, and electric characteristics of the electrodeposited copper foil were examined by scanning electron microscopy, X-ray diffraction, and a four-point probe, respectively. The surface roughness, crystal growth orientation and resistivity was controlled using current density. Large particles were observed on the surface of the copper layer electroplated onto a current density of 25 mA/$cm^2$. However, a uniform surface and lower resistivity were obtained with a current density of 10 mA/$cm^2$. One of the important properties of FCCL is the flexibility of the copper foil. High flexibility of FCCL was obtained at a low current density rather than a high current density. Moreover, a reasonable current density is 20 mA/$cm^2$ considering the productivity and mechanical properties of copper foil.

X선 조사에 의해 (Ba, Sr) FBr : Eu 형광 물질에 생성되는 결함 특성 (Defect Analysis of Phospher (Ba, Sr) FBr : Eu by X-Ray Irradiation)

  • 신중기;이종용;배석환;김재홍;권준현
    • 한국재료학회지
    • /
    • 제18권8호
    • /
    • pp.427-431
    • /
    • 2008
  • The mechanical property of a phosphore layer was investigated by measuring the resolution (LP/mm) and by positron annihilation spectroscopy and SEM. Image plate samples containing the phosphore layer were irradiated by X-rays in a hospital numerous times over a course of several years. The LP/mm values of a (Ba,Sr)FBr : Eu image plate irradiated by X-rays varied between 2.2 and 2.0 over a period of four years. Coincidence Doppler Broadening (CDB) positron annihilation spectroscopy was used to analyze defect structures. The S parameters of the samples from hospital use varied from 0.6219 to 0.6232. There was a positive relationship between the time of exposure to the X-rays and the S parameters. Most of the defects were found to have been generated by X-rays.