• Title/Summary/Keyword: photovoltaics

Search Result 286, Processing Time 0.032 seconds

Analysis of Citizens' Recognition on Photovoltaic System Supply Policies in Domestic Housing Sector (국내 주택부문 태양광 보급정책에 대한 시민 인식분석)

  • Ban, Yong-Un;Lee, Tae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • This study has intended to analyze citizen's recognition on Photovoltaic (PV) System Supply Policy in Korea. To reach this goal, this study has employed a survey method and statistical analysis. We have asked 140 citizens knowing the policy to some degree to answer questionnaires including various contents related to PV supply policy driven by central government of Korea. The contents of questionnaires consist of three parts: 1) supply policies, 2) PV system and 3) expected effect from the policy. To verify any differences among the characteristics of respondents, ANOVA (Analysis of Variance) was carried out in 95% confidence level. This study has found the following results: 1) most citizens were positive about the 'Photovoltaic System Supply Policies'; 2) most citizens anticipated the policy would be helpful to cope with the environmental problems and energy crisis and 3) there exit subtle differences between residents according to the respondent's characteristics such as sex, age, occupation, and housing type.

Intended for photovoltaic modules Compare modeling between SfM based RGB and TIR Images (SfM 기반 RGB 및 TIR 영상해석을 통한 태양광 모듈 이상징후 정밀위치 검출)

  • Park, Joon-Kyu;Han, Woong-ji;Kwon, Young-Hun;Kang, Joon-Oh;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • Recently, interest in solar energy, which is the center of new government energy policy, is increasing. However, the focus is on mass production of solar power plants, and policies and related technologies for maintenance and management of existing installed PV modules are insufficient. In this study, we use UAV (Unmanned Aerial Vehicle) to acquire RGB and infrared images, apply it to the structure-from-motion (SfM) based image analysis tool, model the three- And the position of the hot spot was monitored and coordinates were detected. As a result, it is possible to provide basic spatial information for maintenance of solar module by monitoring and position detection of hot-spot suspected solar cells by superimposing infrared image and RGB image based on unmanned aerial vehicle.

Fabrication and Properties of Organic Semiconductor CuPccp LB Thin Film (유기 반도체 CuPccp LB초박막의 제작 및 특성)

  • Jho, Mean Jea;Xouyang, Saiyang;Lee, Jin Su;Ahn, Da Hyun;Jung, Chi Sup
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • A copper tetracumylphenoxy phthalocyanine (CuPccp) thin film was formed on an organic insulator film by Langmuir-Blodgett (LB) deposition for gas sensor fabrication. To increase the reproducibility of film transfer, stearyl alcohol was used as a transfer promoter. The structural properties of the CuPccp layers were optically monitored through attenuated total reflection and polarization-modulated ellipsometry techniques. The average thickness of a single layer of the CuPccp LB film was measured to be 2.5 nm. Despite the role of the transfer promoter, the stability of the layer transfer was not sufficient to ensure homogeneity of the LB film. This was probably due to the presence of aggregates in the molecular structure of the CuPccp LB film. Nevertheless, copper phthalocyanine polymorphism can be greatly suppressed by the LB arrangement, which appears to contribute to the improvement of electrical conductivity. The p-type semiconductor characteristics were confirmed by Hall measurements from the CuPccp LB films.

Development of Copper and Copper Oxide Removal Technology Using Supercritical CO2 and Hexane for Silicon Solar Cell Recycling (실리콘 태양전지 재자원화를 위한 초임계 CO2 및 헥산을 이용한 구리 및 산화구리 제거기술 개발)

  • Lee, Hyo Seok;Cho, Jae Yu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Lifetime of Si photovoltaics modules are about 25 years and a large amount of waste modules are expected to be discharged in the near future. Therefore, the extraction and collection of valuable metals out of discharged Si modules will be one of the important technologies. In this study, we demonstrated that supercritical $CO_2$ extraction method can be effectively used to remove Cu, one of the abundant elements in the module, as well as its oxide form, $Cu_2O$. Especially, we proved that the addition of hexane as co-solvent is effective for the removal of both materials. The optimal ratio of $CO_2$ and hexane was 4:1 at a fixed temperature and pressure of $250^{\circ}C$ and 250 bar, respectively. In addition, it was proven that the removal of $Cu_2O$ was preceded via reduction of $Cu_2O$ to Cu.

The Influence of Process Variables on the Thin Film Growth of Metal-Halide Perovskites by the Solution Shear Coating (전단코팅 공정으로 제조하는 금속-할라이드계 페로브스카이트의 박막성장에 미치는 공정변수의 영향 고찰)

  • Choe, Jihye;Song, Jiho;Jeong, Jiyoung;Chung, Choong-Heui;Kim, Jaekyun;Hong, Ki-Ha
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.6-15
    • /
    • 2019
  • Metal-halide perovskite (MHP) solar cell is a promising candidate for next-generation flexible devices and the BIPV (Building-integrated photovoltaics) because it can exhibit high power conversion efficiencies over 23%, good bendability and low processing cost. However, MHP solar cells are commonly fabricated by the spin coating that is not a reliable method to produce large-scale commercial solar cells. A shear coating can be one of the potential candidates for the large-scale deposition method of MHP films. In this work, the influences of the process parameters such as solvents of precursor solution, substrate temperature, concentrations of precursor solution, and annealing time on the thin film growth of MHP were investigated for the shear coating process. This study presents the possibility of the shear coating process for large-scaled perovskite film fabrication and reveals the role of process condition in the thin film growth of perovskites.

Optical Simulation Study on Indoor Organic Photovoltaics with Textured Electrodes towards Self-powered Photodetector

  • Biswas, Swarup;Kim, Hyeok
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.236-239
    • /
    • 2019
  • In this work, we performed an optical simulation study on the performance of a PMDPP3T:PCBM based on an organic photovoltaic (PV) device. The virtual PV device was developed in Lumerical, finite-difference time-domain (FDTD) solutions. Different layers of the PV cell have been defined through the incorporation of complex refractive index value of those layers' constituent materials. During the simulation study, the effect of the variation active layer thickness on an ideal short circuit current density ($J_{sc,ideal}$) of the PV cell has been, first, observed. Thereafter, we have investigated the impact of surface roughness of a transparent conducting oxide (TCO) electrode on $J_{sc,ideal}$ of the PV cells. From this simulation, it has been observed that the $J_{sc,ideal}$ value of the PV cell is strongly dependent on the thickness of its active layer and the photon absorption of the PV cell has gradually decreased with the increment of the TCO's surface roughness. As a result, the capability of the PV device has been reduced with the increment of the surface roughness of the TCO.

A study of high-efficiency rotating condensing hybrid solar LED street light module system (고효율 회전 집광형 하이브리드 태양광 LED 가로등 모듈 시스템 연구)

  • Min, Kyung-Ho;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.50-55
    • /
    • 2021
  • Solar power generation, which is one of the methods of using solar energy, has a high possibility of practical implementation compared to other renewable energy power generation, and it has the characteristic that it can generate as much power as needed in necessary places. In addition, maintenance is easy, unmanned operation is possible, and power management can be performed more efficiently if operated in a hybrid method with existing electric energy. Therefore, in this study, numerical analysis using a computer program was performed to analyze the efficient operation and performance improvement of solar energy of the rotating condensing type solar LED street lamp. As a result, the two-axis tracking type could obtain 15.23 % more electricity per year than the fixed type, and additional auxiliary power generation was required for the fixed type by 19 % per year than the tracking type. As a result of computational fluid dynamics(CFD) simulation for PV module surface temperature prediction, the The surface temperature of the Photovoltaics(PV) module incident surface was predicted to be about 10℃ higher than that of the fixed type.

An investigation into energy harvesting and storage to power a more electric regional aircraft

  • Saleh, Ahmed;Lekakou, Constantina;Doherty, John
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • This is an investigation for a more electric regional aircraft, considering the ATR 72 aircraft as an example and the electrification of its four double slotted flaps, which were estimated to require an energy of 540 Wh for takeoff and 1780 Wh for landing, with a maximum power requirement of 35.6 kW during landing. An analysis and evaluation of three energy harvesting systems has been carried out, which led to the recommendation of a combination of a piezoelectric and a thermoelectric harvesting system providing 65% and 17%, respectively, of the required energy for the actuators of the four flaps. The remaining energy may be provided by a solar energy harvesting photovoltaic system, which was calculated to have a maximum capacity of 12.8 kWh at maximum solar irradiance. It was estimated that a supercapacitor of 232 kg could provide the energy storage and power required for the four flaps, which proved to be 59% of the required weight of a lithium iron phosphate (LFP) battery while the supercapacitor also constitutes a safer option.

Prediction of Electric Power on Distribution Line Using Machine Learning and Actual Data Considering Distribution Plan (배전계획을 고려한 실데이터 및 기계학습 기반의 배전선로 부하예측 기법에 대한 연구)

  • Kim, Junhyuk;Lee, Byung-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.171-177
    • /
    • 2021
  • In terms of distribution planning, accurate electric load prediction is one of the most important factors. The future load prediction has manually been performed by calculating the maximum electric load considering loads transfer/switching and multiplying it with the load increase rate. In here, the risk of human error is inherent and thus an automated maximum electric load forecasting system is required. Although there are many existing methods and techniques to predict future electric loads, such as regression analysis, many of them have limitations in reflecting the nonlinear characteristics of the electric load and the complexity due to Photovoltaics (PVs), Electric Vehicles (EVs), and etc. This study, therefore, proposes a method of predicting future electric loads on distribution lines by using Machine Learning (ML) method that can reflect the characteristics of these nonlinearities. In addition, predictive models were developed based on actual data collected at KEPCO's existing distribution lines and the adequacy of developed models was verified as well. Also, as the distribution planning has a direct bearing on the investment, and amount of investment has a direct bearing on the maximum electric load, various baseline such as maximum, lowest, median value that can assesses the adequacy and accuracy of proposed ML based electric load prediction methods were suggested.

A Brief Review on Recent Developments in MAPbI3 Perovskite-Based Transistors

  • Padi, Siva Parvathi;Kim, Taeyong;Rabelo, Matheus;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.348-356
    • /
    • 2021
  • Field-effect transistors (FETs) are the key elements of conventional electronics; hence, have drawn a lot of research and commercial interests. In recent years, metal halide perovskite materials have achieved a remarkable efficiency of 29.15% in the field of photovoltaics, and have drawn the scientific community's attention to promote their use in the field of optoelectronics, such as FETs and phototransistors. The MAPbI3 (methylammonium lead iodide) perovskite TFT has achieved a record hole mobility of 21.41 cm2/V-s in the year 2020. In this review, we will briefly discuss the physical structure of MAPbI3 perovskite and the essential factors that stimulate these devices, together with the role of defects, the ion migration concept, and the implication of both dielectric and electrode materials on the device's performance.