• Title/Summary/Keyword: photothermoelectric

Search Result 2, Processing Time 0.017 seconds

Photothermoelectric Effect of Graphene-polyaniline Composites (그래핀-폴리 아닐린 복합체의 광열전 효과 연구)

  • Choi, Jongwan
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.434-439
    • /
    • 2021
  • Graphene and polyaniline with thermoelectric properties are one of the potential substitutes for inorganic materials for flexible thermoelectric applications. In this study, we studied the photo-induced thermoelectric effect of graphene-polyaniline composites. The graphene-polyaniline composites were synthesized by introducing an amine functional group to graphene oxide for covalently connecting graphene and polyaniline, reducing the graphene oxide, and then polymerizing the graphene oxide with aniline. Graphene-polyaniline composites were prepared by changing the aniline contents in order to expect an optimal photothermoelectric effect, and their structural properties were confirmed through FT-IR and Raman analysis. The photocurrent and photovoltage characteristics were analyzed by irradiating light asymmetrically without an external bias and the current and voltage with various aniline contents. While the photocurrent trends to the electrical conductivity of the graphene-polyaniline composites, the photovoltage was related to the temperature change of the graphene-polyaniline composite, which was converted into thermal energy by light.

Effect of Doping State on Photoresponse Properties of Polypyrrole

  • Choi, Jongwan
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.250-253
    • /
    • 2021
  • Polypyrrole is an organic thermoelectric material which has been receiving extensive attention in recent years. Polypyrrole is applicable in various fields because its electrical properties are controllable by its doping concentration. In this study, the effects of the polypyrrole doping state on its photoresponse were investigated. The degree of doping was controlled by ammonia solution treatment. Then, the chemical structure as a function of the doping states was observed by Raman analysis. Moreover, the photocurrent and photovoltage characteristics for various doping states were measured by an asymmetrically irradiated light source. As the degree of doping increased, the electrical conductivity increased, which affected the photocurrent. Meanwhile, the photovoltage was related to the temperature gradient caused by light irradiation.