• 제목/요약/키워드: photosystem II complex

검색결과 27건 처리시간 0.024초

Differential Recovery of Photosystem II Complex from Low-Temperature Photoinhibition in Plants with Different Chilling Sensitivity

  • Moon, Byoung-Yong;Norio Murata
    • Journal of Photoscience
    • /
    • 제7권2호
    • /
    • pp.39-44
    • /
    • 2000
  • To examine the chilling tolerance lipids, we compared the chilling susceptibility of photosystem II of wild type tobacco plants with that of transgenic tobacco plants, in which the sensitivity to chilling had been enhanced by genetic modification of fatty acid unsaturation of chloroplast membrane lipids. The transgenic tobacco plants were found to contain reduced levels of unsaturated membrane fatty acids by being tansformed with cDNA for glycerol-3-phosphate acyltransferase from squash. For the purpose of studying on the functional integrity of photosystem II during low-temperature photoinhibition, the photochemical efficiency was measured as the ration of the maximun fluorescence of chlorophyll (Fv/Fm) of photosystem II. In parallel with an investigation on the transgenic plants, susceptibility of chilling-resistant species, such as spinah and pea, and of chilling-sensitive ones, such as squash and sweet potato, to low-temperature photoinhibition was also compared in terms of room temperature-induced chlorophyll fluorescence from photosystem II. When leaf disks from the two genotypes of tobacco plants were exposed to light at 5$^{\circ}C$, the transgenic plants showed more rapid decline in photochemical activity of photosysytme II than wild-type plants. When they were pretreated with lincomycin, an inhibitor of chloroplast-encoded protein synthesis, the extent of photoinhibition was even more accelerated. More impottantly, they showed a comparable extent of photoinhibition in the presence of lincomycin, making a clear contrast to the discrepancy observed in the discrepancy observed in the absence of lincomycin. Restoration of Fv/Fm during recovery from low-temperature photoinhibition occurred more slowly in the transgenic tobacco plants than the wild-type. These findings are discussed in relation to fatty acid unsaturation of membrane phosphatidylglycerol. It appears that the ability of plants to rapidly regenerate the active photosystem II complex from might explain, in part, why chilling-resistant plants can toleratlow-temperature photoinhibition.

  • PDF

시금치에서 분리한 광계 2 복합체의 불활성화와 재활성화에 대한 연구 (Studies on Inactivation and Reactivation of Isolated Photosystem II Complexes in Spinach)

  • 전현식
    • Journal of Plant Biology
    • /
    • 제33권4호
    • /
    • pp.277-283
    • /
    • 1990
  • Inactivation and reactivation of photosynthetic oxygen evolving complex were studied with isolated spinach (Spinacia oleraceda. L.) photosystem II particles by the activity of oxygen evolution and chlorophyll fluorescence. When the particles were treated with Tris and urea, the oxygen evolution was inactivated and three polypeptides having molecular weights of 33 kDa, 24 kDa and 18 kDa were simultaneously released. But in NaCl-treated particles, two polypeptides of 24 kDa and 18 kDa were removed from PS II particles. The oxygen evolution activities of Tris and urea-treated particles were not restored by adding cation ions (Mg2+, Mn2+ and Ca2+), but the NaCl-treated particles were restored by exogenously added Ca2+. The removal of these extrinsic polypeptides, especially 33 kDa, markedly showed the decrease of the variable fluorescence (Fv). These results are likely to be due to dissipate thermal energy by antenna of photosystem II complexes.

  • PDF

The first insight into the structure of the Photosystem II reaction centre complex at $6{\AA}$ resolution determined by electron crystallography

  • Rhee, Kyong-Hi
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 Proceedings of the 17th Symposium on Plant Biology Environmental Stress and Photosynthesis
    • /
    • pp.83-90
    • /
    • 1999
  • Electron crystallography of two-dimensional crystalsand electron cryo-microscopy is becoming an established method for determining the structure and function of a variety of membrane proteins that are providing difficult to crystallize in three dimension. In this study this technique has been used to investigate the structure of a ~160 kDa reaction centre sub-core complex of photosystem II. Photosystem II is a photosynthetic membrane protein consisting of more than 25 subunits. It uses solar energy to split water releasing molecular oxygen into the atmosphere and creates electrochemical potential across the thylakoid membrane, which is eventually utilized to generate ATP and NADPH. Images were taken using Philips CM200 field emission gun electron microscope with an acceleration voltage of 200kW at liquid nitrogen temperature. In total, 79 images recorded dat tilt angles ranging from 0 to 67 degree yielded amplitudes and phases for a three-dimensional map with an in-plant resolution of 6$\AA$ and 11.4$\AA$ in the third dimension shows at least 23 transmembrane helices resolved in a monomeric complex, of which 18 were able to be assigned to the D1, D2, CP47 , and cytochrome b559 alfa beta-subunits with their associated pigments that ae active in electron transport (Rhee, 1998, Ph.D.thesis). The D1/D2 heterodimer is located in the central position within the complex and its helical scalffold is remarkably similar to that of the reaction centres not only in purple bacteria but also in plant photosystem I (PSI) , indicating a common evoluationary origin of all types of reaction centre in photosynthetic organism known today 9RHee et al. 1998). The structural homology is now extended to the inner antenna subunit, ascribed to CP47 in our map, where the 6 transmembrane helices show a striking structural similarity to the corresponding helices of the PSI reaction centre proteins. The overall arrangement of the chlorophylls in the D1 /D2 heterodimer, and in particular the distance between the central pair, is ocnsistent with the weak exciton coupling of P680 that distinguishes this reaction centre from bacterial counterpart. The map in most progress towards high resolution structure will be presented and discussed.

  • PDF

인삼 Light Harvesting Chlorophyll Protein의 특성 및 엽소병에서 Singlet Oxygen($^1O_2$) Quenching (Characteristics of Light Harvesting Chlorophyll-Protein Complex and Singlet Oxygen ($^1O_2$) Quenching in Leaf-burning Disease from Panax ginseng C. A. Meyer)

  • 양덕조;이성택
    • Journal of Ginseng Research
    • /
    • 제13권2호
    • /
    • pp.158-164
    • /
    • 1989
  • 인삼엽소병(leaf-burning disease) 원인과 light-harvesting chlorophyll-protein(LHCP) complex의 solar energy 분배능력과의 상호 연관성을 조사하기 위한 기초 연구로써 인삼 thylakoid의 chlorophyll-protein(CP) complex의 조성 및 특징을 조사하였다. 인삼의 CP-complex는 non-denaturing SDS-PAGE 방법에 의해 4개 bands로 분리되었으며 각 band는 Bassi와 Dunahay의 결과에 따라 CPI(PSI의 reaction center와 LHCP I antennae), CP I(PSI reaction center), LHCP II(LHCP II)의 oligoform), 그리고 LHCP II(PS II antennae; CP29, CP26)로 확인되었다. 인삼의 LHCP II 는 양지식물인 spinach, soybean과 비교해 볼 때 오히려 인삼의 band intensity가 더 높았으며, CP I band는 인삼에서만 분리되었다. 인삼 CP-complex band의 absorption 및 fluorescence spectra, chlorophyll a.b ratio 에서도 비교식물과 차이를 나타내었다. Thylakoid membrane의 polypeptide 함량은 인삼에서 비교식물에 비해 현저히 낮은 polypeptide 함량은을 나타내었다. SDS-PAGE에 의한 polypeptide pattern은 band의 수나 band intensity에서 비교식물과 차이를 나타내었으며, 특히 29-35 kD, 55 kD과 60 kD 근치에서 현저한 band intensity 차이를 확인하였다. Specific $^1O_2$에 의해 chl. a가 60%, chl.b는 90%, 그리고 carotenoid는 70%가 파괴되는 것으로 확인되었다.

  • PDF

Mobilization of Photosystem II-Light Harvesting Complex II Supercomplexes during High Light Illumination and State Transitions

  • Nath, Krishna;Elizabeth, John;Poudyal, Roshan Sharma;Ko, Su Yeon;Lim, Woon Ki;Lee, Choon-Hwan
    • Rapid Communication in Photoscience
    • /
    • 제2권1호
    • /
    • pp.18-23
    • /
    • 2013
  • The photosystem II (PSII) light harvesting complex (LHC) consists of a variety of pigment protein complexes which are involved in structural organization and regulation of photosynthetic unit. These LHC proteins encoded by a group of Lhcb genes are essential for the structural integrity of PSII supercomplex, the channeling the excitation energy to the reaction center of PSII and its redistribution to photosystem I by state transitions. Numerous studies with the help of recent technological advancements have enabled a significant progress in our understanding on the structure of PSII-LHCII supercomplexes and their mobilization under various light conditions. Here, we present a mini-review on the latest concepts and models depicting the structure of PSII-LHCII supercomplexes and the role of Lhcb proteins in their supra-molecular organization. Also we will review on the current understandings and remaining problems involved in the mobilization of the supercomplexes during state transitions and during high light illumination for controlling light energy distribution between the two photosystems.

Photoinhibition Induced Alterations in Energy Transfer Process in Phycobilisomes of PS II in the Cyanobacterium, Spirulina platensis

  • Kumar, Duvvuri Prasanna;Murthy, Sistla D.S.
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.644-648
    • /
    • 2007
  • Exposure of algae or plants to irradiance from above the light saturation point of photosynthesis is known as high light stress. This high light stress induces various responses including photoinhibition of the photosynthetic apparatus. The degree of photoinhibition could be clearly determined by measuring the parameters such as absorption and fluorescence of chromoproteins. In cyanobacteria and red algae, most of the photosystem (PS) II associated light harvesting is performed by a membrane attached complex called the phycobilisome (PBS). The effects of high intensity light (1000-4000 ${\mu}mol$ photons $m^{-2}s^{-1}$) on excitation energy transfer from PBSs to PS II in a cyanobacterium Spirulina platensis were studied by measuring room temperature PC fluorescence emission spectra. High light (3000 ${\mu}mol$ photons $m^{-2}s^{-1}$) stress had a significant effect on PC fluorescence emission spectra. On the other hand, light stress induced an increase in the ratio of PC fluorescence intensity of PBS indicating that light stress inhibits excitation energy transfer from PBS to PS II. The high light treatment to 3000 ${\mu}mol$ photons $m^{-2}s^{-1}$ caused disappearance of 31.5 kDa linker polypeptide which is known to link PC discs together. In addition we observed the similar decrease in the other polypeptide contents. Our data concludes that the Spirulina cells upon light treatment causes alterations in the phycobiliproteins (PBPs) and affects the energy transfer process within the PBSs.

Properties of $Cl^-$ Binding Site in Oxygen-Evolving Complex of Photosystem II Studied by FTIR Spectroscopy

  • Koji Hasegawa;Kim, Yukihiro ura;Asako Ishii;Jun Minagawa;Ono, Taka-aki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.376-378
    • /
    • 2002
  • Role of cl$^{[-10]}$ in photosynthetic oxygen-evolving complex was studied by light-induced Fourier transform infrared (FTIR) spectroscopy. cl$^{[-10]}$ depletion resulted in the suppression of amide I and amide II IR modes upon S$_1$ to S$_2$ transition. Br$^{[-10]}$ , 1$^{[-10]}$ and N0$_3$$^{[-10]}$ substituted FTIR difference spectra were very similar to that in cl$^{[-10]}$ reconstitution. F$^{[-10]}$ and $CH_3$COO$^{[-10]}$ substituted spectra were largely distorted. We succeeded in detecting the structural change of N0$_3$ $^{[-10]}$ in the cl$^{[-10]}$ site upon the S$_1$ to S$_2$ transition from $^{14}$ N0$_3$$^{[-10]}$ /$^{15}$ N0$_3$$^{[-10]}$ difference spectrum.

  • PDF

Studies on The Molecular Mechanism of 33 kDa extrinsic Protein in Photosystem II Oxygen-Evolving Complex

  • Xu, Chunhe;Ruan, Kangcheng;Yu, Yong;Weng, Jun
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.82-85
    • /
    • 2002
  • 33kDa extrinsic protein, an important protein in oxygenic photosynthesis, was known to have no fixed configuration in solution. At 20$\^{C}$ and pH 6, 33kDa extrinsic protein showed changes of free energy of -14.6 kJ/mor$\^$-1/ and of standard volume of -120mL/mol, respectively, with increase of hydrostatic pressure, comparatively lower than for most proteins. NBS modification of Trp241 in 33kDa extrinsic protein dramatically changes the secondary protein structure, its affinity to photosystem II as well as photosynthetic oxygen evolution. The relationship between structural change and transport of oxygen, water and proton is deserved a further study.

  • PDF