• Title/Summary/Keyword: photosynthesis rate

Search Result 464, Processing Time 0.027 seconds

Variation in Photosynthesis and Leaf Pigments of Susceptible Pinus densiflora and Resistant Pinus rigida Following Pine Gall Midge Attack (솔잎혹파리 침해(侵害)에 따른 감수성수종(感受性樹種)인 소나무와 저항성수종(抵抗性樹種)인 리기다소나무에 있어서 광합성(光合成) 및 엽(葉)의 색소변이(色素變異)에 관한 연구(硏究))

  • Lee, Don Koo;Sung, Joo Han
    • Journal of Korean Society of Forest Science
    • /
    • v.65 no.1
    • /
    • pp.1-11
    • /
    • 1984
  • Susceptible trees of Pinus densiflora and resistant trees of Pinus rigida following pine gall midge (Tnecodiplosis japonensis Uchida et Inouye) attack were seasonally compared to examine the variation in needle growth and photosynthetic ability, respiration rate, chlorophyll contents, carotenoid and anthocyanin contents. Also, carotenoid and anthocyanin contents of larvae both from soil and from galled tissue were compared during March and September, respectively. The plantation damaged severely by this insect consisted mostly of 10-to 15-year old P. rigida and P. densiflora. The results obtained in this study were as follows: 1) The length of the infested needles of P. densiflora decreased by 48.1 percent compared with the normal needles, while that of P. rigida did 37.4 percent. 2) All of P. densiflora and P. rigida showed higher photosynthetic ability in normal needles than in infested needles. The maximum photosynthetic ability of P. densiflora was shown in mid-August, while that of P. rigida in mid-October. In contrast to that, respiration rate of infested needles was higher than that of normal needles in both species. The respiration rate of P. rigida was higher than that of P. densiflora. 3) P. rigida had higher total chlorophyll contents than P. densiflora. The total carotenoid contents tents in infested needles were higher than those in normal needles of both species. 4) Total carotenoid contents were generally higher in P. rigida than in P. densiflora during the growing season. The total carotenoid content (0.094mg/g) in larvae from soil was similar to that (0.092mg/g) in larvae from galled tissues. 5) Infested needles of both species showed higher anthocyanin contents than normal needles. Higher anthocyanin contents in galled needles were due primarily to its active formation stimulated by larval attack. Thus, reddish-brown coloration occurred only in galled needles of P. densiflora.

  • PDF

Variations in Nutrients & $CO_2$ Uptake Rates of Porphyra yezoensis Ueda and a Simple Evaluation of in situ N & C Demand Rates at Aquaculture Farms in South Korea (방사무늬김(Porphyra yezoensis Ueda)의 영양염과 이산화탄소 흡수율 정밀 평가를 통한 양식해역의 질소와 탄소 요구량 산정)

  • Shim, JeongHee;Hwang, Jae Ran;Lee, Sang Yong;Kwon, Jung-No
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.297-305
    • /
    • 2014
  • In order to understand the contribution of seaweed aquaculture to nutrients and carbon cycles in coastal environments, we measured the nutrients & carbon uptake rates of Porphyra yezoensis Ueda sampled at Nakdong-River Estuary using a chamber incubation method from November 2011 to April 2012. It was observed that the production rate of dissolved oxygen by P. yezoensis (n=30~40) was about $68.8{\pm}46.0{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and uptake rate of nitrate, phosphate and dissolved inorganic carbon (DIC) was found to be $2.5{\pm}1.8{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, $0.18{\pm}0.11{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and $87.1{\pm}57.3{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, respectively. There was a positive linear correlation existed between the production rate of dissolved oxygen and the consumption rates of nitrate, phosphate and DIC, respectively, suggesting that these factors may serve as good indicators of P. yezoensis photosynthesis. Further, there was a negative logarithmic relationship between fresh weight of thallus and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (0.1~0.3 g) were much more efficient at nutrients and $CO_2$ uptake than old specimens. It means that the early culturing stage than harvesting season might have more possibilities to be developed chlorosis by high rates of nitrogen uptake. However, N & C demanding rates of Busan and Jeollabuk-do, calculated by monthly mass production and culturing area, were much higher than those of Jeollanam-do, the highest harvesting area in Korea. Chlorosis events at Jeollabuk-do recently might have developed by the reason that heavily culture in narrow area and insufficient nutrients in maximum yield season (Dec.~Jan.) due mostly to shortage of land discharge and weak water circulation. The annual DIC uptake by P. yezoensis in Nakdong-River Estuary was estimated about $5.6{\times}10^3\;CO_2$ ton, which was about 0.03% of annual carbon dioxide emission of Busan City. Taken together, we suggest more research would be helpful to gain deep insight to evaluate the roles of seaweed aquaculture to the coastal nutrients cycles and global carbon cycle.

Analysis of Changes in Photosynthetic Ability, Photosystem II Activity, and Canopy Temperature Factor in Response to Drought S tress on Native Prunus maximowiczii and Prunus serrulate (자생 산개벚나무, 잔털벚나무의 건조 스트레스에 따른 광합성 및 광계II 활성, 엽온 인자 변화 분석)

  • Jin, Eon-Ju;Yoon, Jun-Hyuck;Bae, Eun-Ji
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.405-417
    • /
    • 2022
  • The purpose of this study was to describe the photosynthetic features of Prunus maximowiczii and Prunus serrulate Lindl. var. pubescens (Makino) Nakai in response to drought stress. Specifically, we studied the effects of drought on photosynthetic ability and photosystem II activity. Drought stress (DS) was induced by cutting the water supply for 30 days. DS decreased the moisture contents in the soil, and between the 10th and 12th days of DS, both species had 10% or less of x., After the 15th day of DS, it was less than 5%, which is a condition for disease to start. We observed a remarkable decrease of maximum photosynthesis rate starting from 10th day of DS; the light compensation point was also remarkable. Dark respiration and net apparent quantum yield decreased significantly on the 15th day of DS, and then increased on the 20th day. In addition, the stomatal transpiration rate of P. maximowiczii decreased significantly on the15th day of DS, and then increased on the 20th day. Water use efficiency increased on the 15th day of DS, and then decreased on the 20th day. The stomatal transpiration rate of P. serrulate decreased significantly on the 20th day of DS, and then increased afterward, while its water use efficiency increased on the 20th day of DS, and then decreased afterward. These results indicate that the closure of stoma prevented water loss, resulting in a temporary increase of water use efficiency. Chlorophyll fluorescence analysis detected remarkable decreases in the functional index (PIABS) and energy transfer efficiency in P. maximowiczii after the 15th day of DS. Meanwhile, photosystem II activity decreased in P. serrulate after 20 days of DS. In addition, Ts-Ta, PIABS, DIO/RC, ETO/RC followed similar trends as those of the soil moisture content and photosynthetic properties, indicating that they can be used as useful variables in predicting DS in trees.

The ecological response of the climate change indicator species, Korean fir (Abies koreana E. H. Wilson) (기후변화 지표종 구상나무(Abies koreana E. H. Wilson)의 생태학적 반응)

  • Yoon Seo Kim;Se Hee Kim;Jung Min Lee;Ji Won Park;Yeo Bin Park;Jae Hoon Park;Eui Joo Kim;Kyeong Mi Cho;Yoon Kyung Choi;Ji Hyun Seo;Joo Hyun Seo;Gyu Ri Kim;Ju Seon Lee;Do Hun Ryu;Min Sun Kim;Young Han You
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.62-71
    • /
    • 2024
  • To assess the ecological changes of Korean fir (Abies koreana E. H. Wilson) under climate change conditions, growth and physiological responses were analyzed over a 5-year period in a control group (outdoors) and in a treatment group where the temperature and CO2 levels were elevated to closely resemble RCP 4.5 conditions. The results showed an increasing trend in annual branch length of A.koreana in the climate change treatment group over time. While climate change conditions did not significantly impact the morphological differences of A.koreana leaves, they did influence the biomass of the leaves, suggesting that as climate change progresses, the productivity of A.koreana leaves may decline. On the other hand, the chlorophyll content in A.koreana under climate change conditions was higher in the climate change treatment group, whereas the photosynthesis rate, transpiration rate, water use efficiency and stomatal conductance was higher in the control group. This suggests that an environment with elevated temperature and CO2 could influence an increase in stomatal density, but having a negative impact on photosynthetic reactions. Further research on stomatal density under each environmental treatment will be required to confirm this hypothesis. Additionally, as this study only observed changes in leaf biomass, further empirical research should be considered to understand the changes in biomass of A.koreana under climate change conditions. In conclusion, the environmental adaptability of A.koreana is expected to weaken in the long term under elevated temperatures and CO2.

Change of photosynthetic efficiency and yield by low light intensity on ripening stage in japonica rice (등숙기의 차광 처리에 의한 광합성능 및 쌀 수량 변화)

  • Lee, Min Hee;Kang, Shin-Gu;Sang, Wan-Gyu;Ku, Bon-Il;Kim, Young-Doo;Park, Hong-Kyu;Lee, Jeom-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.327-334
    • /
    • 2014
  • Light intensity is one of the most important requirements for plant growth, affecting growth, development, survival, and crop productivity. Sunlight is the main energy source on Earth which is energy used by photosynthesis to convert light energy to chemical energy. In this study, the light use efficiency and photosynthetic characteristics of high-quality rice cultivars were evaluated after shading on ripening stage. For the study, we treated of three levels of shade (0, 50 and 70%) on rice at ripening stage and two levels of nitrogen (9 and 18 kg/10a) used three high yielding rice cultivars, such as Boramchan, Hopum, and Honong. The shade was given for the respective plots from heading up to harvesting. We were performed to determine growth survey, SPAD and chlorophyll fluorescence every 10 days interval after shading on ripening stage. At harvest stage, grain yield and yield components were determined. Results of analysis of the results representing the maximum photosynthetic efficiency of PSII, Fv/Fm, and SPAD were decreased by depending on the time at full sunlight. But shade treatments were not changed and a significant difference among cultivars did not appear. Compared with the full sunlight, shade treatments significantly delayed ripening rate and decreased rice quality of cultivated rice. Therefore, rice yield, can be reduced in proportion to the shading density is apparent, the rate of decrease was not observed difference between varieties, when protected from light 70%, and decreased to less than 50%. The adverse effects of low light intensity on the yield and yield components were not able to significantly minimize by the nitrogen level.

Allyl-isothiocyanate Content and Physiological Responses of Wasabia japonica Matusum as Affected by Different EC Levels in Hydroponics (고추냉이 수경재배시 배양액의 EC 수준이 Allyl-isothiocyanate 함량과 생리적 반응에 미치는 영향)

  • Choi, Ki-Young;Lee, Yong-Beom;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2011
  • This study aimed to determine the effect of EC (electrical conductivity) levels of nutrient solution in hydroponic culture on allyl-isothiocyanate (AITC) content within plant tissues, Vitamin C content and physiological responses in wasabi plant (Wasabia japonica M. 'Darma'). The 'Darma' was grown for 5 weeks with a deep flow technique (DFT) system controlled at 5 different EC levels, including 0.5, 1, 2, 3, and $5dS{\cdot}m^{-1}$. In result, the highest total content of AITC showed at EC level 5 and $3dS{\cdot}m^{-1}$ for 1 or 5- week, respectively. The total content of AITC increased about 1.2-1.4 times when the plants were grown in the EC levels between 0.5 and $2dS{\cdot}m^{-1}$, whereas the content decreased about 6 and 56 % in the EC level 3 and $5dS{\cdot}m^{-1}$, respectively. The content of AITC was relatively higher in petiole tissue, about 53 %, taken from 1 week-grown plants when the EC was controlled between 0.5 and $2dS{\cdot}m^{-1}$. Root tissue also had relatively higher content of AITC, about 45.1 %, when the EC was controlled at 3 and $5dS{\cdot}m^{-1}$. However, a 5-fold decrease in the AITC content was found in blade tissue and a 6.8-fold decrease in root when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. There was no significant difference in the vitamin C content in 1-week grown leaf tissues under the different EC level treatments; but, the content increased about 27% in 5-week grown plants at the EC level between 0.5 and $2dS{\cdot}m^{-1}$, compared to the 1 week-grown leaf tissue. Electrolyte leakage of leaf tissue taken from 3-week grown plant was 3-fold higher at the EC level $5dS{\cdot}m^{-1}$, compared to the EC level between 0.5 and $2dS{\cdot}m^{-1}$. Chlorophyll content, photosynthesis rate and transpiration rate were decreased when the EC was controlled at higher than $2dS{\cdot}m^{-1}$. Leaf water content, specific leaf area and growth were decreased when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. All the integrated results in this study suggest that the EC level of nutrient solution should be maintained at lower than $3dS{\cdot}m^{-1}$ in order to improve nutritional value and quantity required for hydroponically grown wasabi as functional vegetable.

Analysis of Year-round Cultivation Characteristics of Artemisia princeps in Greenhouse and Enhancement of Eupathilin Content by Environmental Stress (강화쑥의 온실 주년 재배 특성 분석 및 환경 처리를 통한 유파틸린 성분 증대)

  • Kang, Woo Hyun;Han, Zeesoo;Lee, Seung Jun;Shin, Jong Hwa;Ahn, Tae In;Lee, Joo Young;Kang, Suk Woo;Jung, Sang Hoon;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2018
  • Mugwort (Artemisia princeps) is a medicinal plant that has a substance called euphatilin, which is effective for cell damage and gastritis recovery. The objectives of this study were to investigate the annual growth characteristics of Artemisia princeps in greenhouse and to increase the eupatiline content by environmental stresses. Growth and eupatilin content of the plants were compared after 6 weeks of seedling and subsequent 8 weeks of greenhouse cultivation. Photosynthesis of mugwort plants did not saturate even at a relatively high light intensity of $1,200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Growth rate of the plants reached its highest at two weeks after transplanting and began to decrease since 8 weeks after transplanting. The plants showed typical characteristics of a perennial herbaceous plant as they were sensitive to seasonal changes. In particular, the plants showed high growth and eupatilin content in spring and summer as vegetative growth periods, but flowering and wintering caused considerable decreases in growth and eupatilin content in fall and winter. Therefore, application of night interruption is essential for year-round cultivationof the plant. Two stresses and a elicitor were treated: drought stresses by stopping irrigation at 5, 6, 7, and 8 days before harvest; salt stresses with nutrient solution concentrations of 2, 4, 6, 8, and $10dS{\cdot}m^{-1}$ by adding sodium chloride at 3 days before harvest; and foliar applications of methyl jasmonates of 12.5, 25, 50, and $100{\mu}M$ at 3 days before harvest. Significant increase in eupatilin content was observed at drought stresses of 7- and 8-days of irrigation stop and foliar application of $25{\mu}M$ methyl jasmonate, while no significant increase observed at salt stresses. From the results, it was confirmed that the environmental treatments can improve the productivity and quality of Artemisia princeps as a phamaceutical raw material.

Growth and Physiological Responses of 1-Year-Old Containerized Seedlings of Quercus myrsinaefolia by Shading Treatment (피음처리에 따른 가시나무 1년생 용기묘의 생장과 생리적 반응)

  • Song, Ki-Sun;Sung, Hwan-In;Cha, Young-Geun;Kim, Jong-Jin
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.373-381
    • /
    • 2011
  • This study was carried out to investigate the growth and physiological responses to shading treatment of 1-year-old containerized seedling of Quercus myrsinaefolia. Experimental process was conducted in a facility that consisted of compartments under the lighting control with full sunlight and shading (35%, 55% and 75% of full sunlight). Height and root collar diameter growth were high in the seedlings under both 35% and 55% shading. Regardless of shading level, root collar diameter growth lasted for more than 4 weeks compared to height growth. Highest H/D ratio was observed in the seedlings under 35% shading as 4.31, and the lowest ratio was 3.63 under 75% shading. It was found that seedlings under 55% shading showed highest dry mass production, which was followed in seedlings under 35% shading. In case of leaf dry weight ratio (LWR) after shading treatment, the highest value was 0.53 under 55% shading, and followed in seedlings under 35% shading as 0.52. But root dry weight ratio (RWR) was highest as 0.36 under 75% shading (highest level of shading). In terms of shading treatment, it was found that the higher level of shading had a tendency toward the higher content of chlorophyll a and the higher total chlorophyll content in the leaves of Quercus myrsinaefolia, but there was no significant difference in the content of chlorophyll b depending on the level of shading. It was found that high photosynthesis and transpiration rate were more correlated with high level of shading than full sunlight, but the rates of seedlings had a tendency to be higher under 35% and 55% shading than under 75% shading. The results on growth and physiological responses to different shading levels of 1-year-old containerized seedlings of Quercus myrsinaefolia could be useful in setting up the optimum light intensity for growth, and in estimating the shade tolerance of the species.

Comparing Net CO2 Uptake of Schlumbergera truncata 'Pink Dew' Phylloclades in a Growth Chamber and a Greenhouse (생육상과 온실에서 게발선인장 '핑크듀'의 엽상경별 CO2 흡수율 비교)

  • Seo Hee Jung;Ah Ram Cho;Yoon Jin Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.64-71
    • /
    • 2023
  • Crassulacean acid metabolism (CAM) plants use surplus CO2 generated by cooling and heating at night when ventilation is not needed in a greenhouse. Schlumbergera truncata 'Pink Dew' is a multi-flowering cactus that needs more phylloclades for high-quality production. This study examined photosynthetic characteristics by the phylloclade levels of S. truncata in a growth chamber and a greenhouse for use of night CO2 enrichment. The CO2 uptake rate of the S. truncata's top phylloclade in a growth chamber exhibited a C3 pattern, and the second phylloclade exhibited a C3-CAM pattern. The CO2 uptake rate of the top phylloclade in a greenhouse showed a negative value both day and night, but those of the second phylloclade exhibited a CAM pattern. The stomatal conductance and water-use efficiency (WUE) of S. truncata at both the top and second phylloclades were higher in a growth chamber than in a greenhouse. The WUE of S. truncata in a growth chamber and a greenhouse was higher at the second phylloclade, which is a CAM pattern compared with those of the top phylloclade. The daily total net CO2 uptake of S. truncata was higher in a growth chamber than in a greenhouse. The daily total net CO2 uptake of S. truncata at the second phylloclade had the highest value of 155 mmol·m-2·d-1 in a growth chamber. The night total CO2 uptake of S. truncate at the second phylloclade was 3-fold higher in a growth chamber than in a greenhouse. S. truncata's second phylloclade exhibited a CAM pattern that uptake CO2 at night, and the second phylloclade, was more mature than the top phylloclade. A multi-flowering cactus S. truncata 'Pink Dew' efficiently uptake night surplus CO2 in the proper environmental condition with matured phylloclade.

Parameters on Physiological Responses of Soybean (Glycine max Merr.) to Salinity (염분에 대한 콩의 생리학적 반응지표 연구)

  • Chon, Sang-Uk;Park, Jong-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.185-191
    • /
    • 2003
  • The mechanism imparting salt tolerance to crop plants remains still unsolved, although soybean has been classified as a susceptible plant to NaCl. To determine optimum parameters on physiological responses for improving sensitivity of salinity in breeding program, soybean (Glycine max Merr., cv. "Gwan-gan") plants were grown in a greenhouse, treated 20 days after emergence for 7 days with NaCl at 0, 30, 60, and 90mM, corresponding to electric conductivity of 1.2, 4.4, 7.3, and 10.4 dS/m, respectively, and assessed 30 days after treatment. Chlorophyll contents were significantly decreased by NaCl ($0.4{\sim}1.0\;mg/g$) compared to control (1.2 mg/g). Photosynthesis rate by NaCl treatment at $0{\sim}90\;mM$ at flowering stage was ranged from 5.0 (control) to $9.6\;{\mu}mol/m^2/s$. Oxygen for respiration was consumed from 5.4 to $9.7\;{\mu}mol/m^2/s$ so that the ratio of $O_2$ (evolution:consumption) was increased with the increase of NaCl, indicating that $O_2$ consumption seems to go beyond $O_2$ evolution. Water potential of leaf at vegetative stage II was ranged from -0.6 to -1.8 MPa and the highest level was observed at mid-day. Water potential by salt stress was decreased with range of $-2.1{\sim}-2.7MPa$ compared to control. Transpiration was decreased from 17% to 20% by NaCl stress. Water vapor diffusing resistance of intercellular air space was affected significantly, increasing up to $16{\sim}24%$ compared to control by NaCl treatment. Salt-treated soybean tended to accumulate $Na^+$, specially in root, with reduced absorption of N, P, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ contents. Free proline content of soybean leaf as affected by different NaCl concentrations was increased 4.2 times ($184{\sim}434\;{\mu}g/g$) more than control. NaCl also increased activities of nitrate reductase and peroxidase by $28{\sim}161%$ and $3{\sim}22%$, respectively. The results show that physiological characteristics of soybean plants during assay were useful as the best parameters of salt stress or salt tolerance test to improve sensitivity in screening and breeding program among cultivars or germplasms.