• Title/Summary/Keyword: photorepair

Search Result 4, Processing Time 0.019 seconds

Differences in the Amino Acid Sequences of CPD Photolyases of UV-sensitive and UV-resistant Rice Cultivars

  • Teranishi, Mika;Hidema, Jun;Fujino, Takana;Hirouchi, Tokuhisa;Yamamoto, Kazuo;Kumagai, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.329-331
    • /
    • 2002
  • There is a difference in the inhibitory effects to supplemental UVB (wavelengths 280 to 320 nm) among Japanese rice (Oryza sativa L.), the cultivar Norin I is less resistant while the cultivar Sasanishiki is resistant. UVB induces photodamage in DNA. Cyclobutane pyrimidine dimer (CPD) is a major UV-induced DNA lesion. Photorepair, which is mediated by photolyase, is the major pathway in plants for repairing CPD. We have analyzed CPD induction and repair in Sasanishiki and its close relative Norin I using alkaline agarose gel electrophoresis. Norin I is deficient in CPD photoreactivation and excision, thus UV sensitivity correlates with deficient dimer repair [I]. The photorepair deficiency in Norin I results from a functionally altered photolyase with a photoflash analysis [2]. In this paper, we examined the UVB-sensitivity of several other UV-sensitive and -resistant cultivars and found that the CPD photolyase activity was deficient in UV-sensitive ones. It was also evident that there was a variation in the deduced amino acid sequences of CPD photolyases of the UV-sensitive and -resistant cultivars, whereas each deduced amino acid sequence of the UV-sensitive cultivars and of the UV-resistant ones was the same. These results suggest that the difference in the CPD photolyases of UV-sensitive and -resistant rice might be due to the structural alteration of CPD photolyase.

  • PDF

Physiological and Biochemical Analyses of Rice Sensitivities to UVB Radiation

  • Hidema, Jun;Kumagai, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.162-165
    • /
    • 2002
  • Rice is widely cultivated in various regions throughout Asia. Over a five-year period, we investigated the effects of supplemental UVB radiation on the growth and yield of Japanese rice cultivars in the field. The findings of that study indicated that supplemental UVB radiation has inhibitory effects on the growth and grain development. Furthermore, we investigated the sensitivity to UVB radiation of rice cultivars of 5 Asian rice ecotypes, and found that rice cultivars vary widely in UVB sensitivity. The aim of our study is improving UVB resistance in plants by bioengineering or breeding programs. In order to make it, there is need to find the molecular origin of the sensitivity to UVB. Cyclobutane pyrimidine dimer (CPD) is major UV-induced DNA lesions. Plants possess two mechanisms to cope with such DNA damage. The first is the accumulation of UV-absorbing compounds. Our previous data showed that the steady-state CPD levels in leaves of rice grown under chronic radiation in any culture were not so greatly influenced by the increased UV-absorbing compounds content, although there was a significant positive correlation between the CPD levels induced by challenge UVB exposure and the UV-absorbing compounds content. The other is the repair of DNA damage. Photorepair is the major pathway in plants for repairing CPD. We found that the sensitivity to UVB could seriously correlate with the low ability in CPD photorepair in rice plants. These results suggest that photo lyase might be an excellent candidate for restoration by way of selective breeding or engineering in rice.

  • PDF

Ultraviolet-B radiation sensitivities in rice plant: cyclobutane pyrimidine dimer photolyase activities and gene mutations

  • Hidema, Jun;Kumagai, Tadashi
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.29-34
    • /
    • 2004
  • Reduction in stratospheric ozone layer increases the amount of ultraviolet-B radiation (UVB: 280-320 nm) that reaches the earth ’ s surface. UVB radiationcan damage plants, resulting in decrease in growth and productivity. UVB-augmentation studies have indicated that the sensitivity to UVB radiation in plants varies among the species and cultivars. However. there are no definitive answers for the mechanisms of UVB-resistance in higher plants and for bioengineering design and development of UVB-tolerant plants. We have been studying physiological and biochemical aspects of the effects of UVB radiation on growth and yield of rice COryza sativa LJ. aiming to clarify the mechanism of resistance to UVB radiationin rice. At this meeting. weintroduce our research as followed: (1) supplementary UVB radiation has inhibitory effects on the growth. yield and grain development of rice; (2) UVB sensitivity of rice varies widely among cultivars; (3) among Japanese rice cultivars. Sasanishiki. a leading variety in northeast Japan. is more resistant to UVB. while Norin 1. a progenitor of Sasanishiki. is less resistant; (4)UV-sensitive Norin 1 cultivar is deficient in photorepair of UVB-induced cyclobutane pyrimidine dimer (CPD). and this deficiency results from one amino acid residue alteration of CPD photolyase. These results suggest that spontaneously occurring mutation in CPD photolyase gene could lead to difference in UVB sensitivity in rice. and that CPD photolyase might be a useful target for improving UVB-sensitivity in rice by selective breeding or bioengineering of UVB-tolerant rice.

  • PDF

Effects of Enhanced Ultraviolet-B Radiation on Plants (오존층 파괴에 의한 자외선 증가가 식물에 미치는 영향)

  • Hak Yoon Kim;Moon Soo Cho
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.197-206
    • /
    • 2001
  • The depletion of stratospheric ozone is regarded as a major environmental threat to plant growth and ecosystem. The ozone depletion has caused plants to be exposed to an increased penetration of solar ultraviolet-B (UV-B) radiation in the 280-320 nm wavelength range. Enhanced UV-B radiation may have influence on plants biological functions in many aspects including inhibition of photosynthesis, DNA damage, lipid peroxidation, changes in morphology, phenology, and biomass accumulation. To cope with the damage by UV radiation, plants have evolved to have protective mechanisms, such as photorepair, accumulation of UV-absorbing compounds, leaf thickening and activation of antioxidative enzymes. The objective of this review is to address the effects of enhanced UV-B on plant growth, UV-B action mechanisms and protection and protection mechanisms in plants.

  • PDF