• 제목/요약/키워드: photonic crystal structure

검색결과 90건 처리시간 0.031초

Electro-controllable omni-directional laser emissions from a helical polymeric network composite film

  • Jang, Won-Gun;Park, Byoung-Choo;Kim, Min-A;Kim, Sun-Woong;Kim, Yun-Ki;Choi, Eun-Ha;Seo, Yoon-Ho;Cho, Guang-Sup;Kang, Seung-Oun;Takezoe, Hideo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.883-886
    • /
    • 2008
  • In optical information technology, an electro-controllable Photonic Band Gap (PBG) in a photonic crystal (PC) material is potentially useful for the manipulation of light. Despite a great deal of research on PBGs, the reliable use of electro-active PBG material systems is restricted to only a few cases because of the complex and limiting nature of the structures involved. Here, we propose a PBG system that uses a liquid crystal (LC) polymer composite. The composite is made of nematic LCs (NLCs) embedded in polymeric helical networks of photo-polymerized cholesteric LCs (CLCs). The composite film shows a large field-induced reversible color shift over 150 nm of the reflection band, due to the reorientational undulation of the helical axis, similar to the Helfrich effect.

  • PDF

2차원 Bravais Lattice를 가지는 나노 패턴 제조 및 광결정 효과를 가지는 ZnO 나노 기둥 성장 (Fabrication of 2D Bravais Nano Pattern and Growth of ZnO Nano Rods with Photonic Crystal Effect)

  • 김태언;문종하;김선훈;김두근;김진혁
    • 한국재료학회지
    • /
    • 제21권12호
    • /
    • pp.697-702
    • /
    • 2011
  • Two-dimensional (2D) nano patterns including a two-dimensional Bravais lattice were fabricated by laser interference lithography using a two step exposure process. After the first exposure, the substrate itself was rotated by a certain angle, $90^{\circ}$ for a square or rectangular lattice, $75^{\circ}$ for an oblique lattice, and $60^{\circ}$ for a hexagonal lattice, and the $90^{\circ}$ and laser incident angle changed for rectangular and the $45^{\circ}$ and laser incident angle changed for a centered rectangular; we then carried out a second exposure process to form 2D bravais lattices. The band structure of five different 2D nano patterns was simulated by a beam propagation program. The presence of the band-gap effect was shown in an oblique and hexagonal structure. The oblique latticed ZnO nano-photonic crystal array had a pseudo-bandgap at a frequency of 0.337-0.375, 0.575-0.596 and 0.858-0.870. The hexagonal latticed ZnO nano-crystallite array had a pseudo-bandgap at a frequency of 0.335-0.384 and 0.585-0.645. The ZnO nano structure with an oblique and hexagonal structure was grown through the patterned opening window area by a hydrothermal method. The morphology of 2D nano patterns and ZnO nano structures were investigated by atomic force microscopy and scanning electron microscopy. The diameter of the opening window was approximately 250 nm. The height and width of ZnO nano-photonic crystals were 380 nm and 250 nm, respectively.

Holographic Polymer-Dispersed Liquid Crystals and Polymeric Photonic Crystals Formed by Holographic Photolithography

  • Kyu Thein;Meng Scott;Duran Hatice;Nanjundiah Kumar;Yandek Gregory R.
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.155-165
    • /
    • 2006
  • The present article describes the experimental and theoretical observations on the formation of holographic, polymer-dispersed, liquid crystals and electrically switchable, photonic crystals. A phase diagram of the starting mixture of nematic liquid crystal and photo-reactive triacrylate monomer was established by means of differential scanning calorimetry (DSC) and cloud point measurement. Photolithographic patterns were imprinted on the starting mixture of LC/triacrylate via multi-beam interference. A similar study was extended to a dendrimer/photocurative mixture as well as to a single component system (tetra-acrylate). Theoretical modeling and numerical simulation were carried out based on the combination of Flory-Huggins free energy of mixing and Maier-Saupe free energy of nematic ordering. The combined free energy densities were incorporated into the time-dependent Ginzburg-Landau (Model C) equations coupled with the photopolymerization rate equation to elucidate the spatio-temporal structure growth. The 2-D photonic structures thus simulated were consistent with the experimental observations. Furthermore, 3-D simulation was performed to guide the fabrication of assorted photonic crystals under various beam-geometries. Electro-optical performance such as diffraction efficiency was evaluated during the pattern photopolymerization process and also as a function of driving voltage.

Nanopatterned Surface Effect on the Epitaxial growth of InGaN/GaN Multi-quantum Well Light Emitting Diode Structure

  • Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권2호
    • /
    • pp.40-43
    • /
    • 2009
  • The authors fabricated a nanopatterned surface on a GaN thin film deposited on a sapphire substrate and used that as an epitaxial wafer on which to grow an InGaN/GaN multi-quantum well structure with metal-organic chemical vapor deposition. The deposited GaN epitaxial surface has a two-dimensional photonic crystal structure with a hexagonal lattice of 230 nm. The grown structure on the nano-surface shows a Raman shift of the transverse optical phonon mode to $569.5\;cm^{-1}$, which implies a compressive stress of 0.5 GPa. However, the regrown thin film without the nano-surface shows a free standing mode of $567.6\;cm^{-1}$, implying no stress. The nanohole surface better preserves the strain energy for pseudo-morphic crystal growth than does a flat plane.

A Novel Photonic Crystal Fiber Sensor with Three D-shaped Holes Based on Surface Plasmon Resonance

  • Bing, Pibin;Sui, Jialei;Huang, Shichao;Guo, Xinyue;Li, Zhongyang;Tan, Lian;Yao, Jianquan
    • Current Optics and Photonics
    • /
    • 제3권6호
    • /
    • pp.541-547
    • /
    • 2019
  • A novel photonic crystal fiber (PCF) sensor with three D-shaped holes based on surface plasmon resonance (SPR) is analyzed in this paper. Three D-shaped holes are filled with the analyte, and the gold film is deposited on the side of three planes. The design of D-shaped holes with outward expansion can effectively solve the uniformity problem of metallized nano-coating, it is beneficial to the filling of the analyte and is convenient for real-time measurement of the analyte. Compared with the hexagonal lattice structure, the triangular arrangement of the clad air holes can significantly reduce the transmission loss of light and improve the sensitivity of the sensor. The influences of the air hole diameter, the distance between D-shaped holes and core, and the counterclockwise rotation angle of D-shaped holes on sensing performance are studied. The simulation results show that the wavelength sensitivity of the designed sensor can be as high as 10100 nm/RIU and the resolution can reach 9.9 × 10-6 RIU.

광결정 기반의 휘발성 유기 화합물 검지 박막 센서 (Photonic-Crystal-Based Thin Film Sensor for Detecting Volatile Organic Compounds)

  • 장형관;박정열
    • 대한기계학회논문집B
    • /
    • 제40권3호
    • /
    • pp.149-155
    • /
    • 2016
  • 휘발성 유기화합물과 같은 환경유해물질의 조기 검지는 인체 및 환경보호를 위한 중요성을 가진다. 그러나 기존의 모니터링 기술은 많은 시간과 값비싼 장비를 필요로 하고 있다. 본 논문에서는, 무전원으로 작동가능하며, 휴대가 용이하고 빠른 응답속도를 가지는 광결정 기반의 VOC 검출용 박막센서를 제안하였다. 휘발성 유기 화합물은 Polydimethylsiloxane(PDMS)를 팽창시키는 능력을 가지고 있어, 제안된 센서에 휘발성 유기 화합물이 노출되면 PDMS 가 팽창함에 따라 광결정의 구조변화를 가져오므로 색이 변하게 된다. 이러한 원리에 기초하여 휘발성 유기 화합물에 노출되었을 때 가시광선 영역의 정량적 색변화를 통해 검출할 수 있는 환경센서를 구현하였다. 제안된 센서는 수 초 이내의 빠른 반응속도를 보이며, 기체 상태의 휘발성 유기 화합물에도 색 변화를 일으키는 것을 성공적으로 확인하였다.

쌍극자 광원의 진동방향, Mie 산란자, 그리고 Pillow 렌즈가 OLED의 광추출효율에 미치는 영향에 대한 시뮬레이션 연구 (Simulation of the Combined Effects of Dipole Emitter Orientation, Mie Scatterers, and Pillow Lenses on the Outcoupling Efficiency of an OLED)

  • 이주섭;이종완;박재훈;고재현
    • 한국광학회지
    • /
    • 제25권4호
    • /
    • pp.193-199
    • /
    • 2014
  • 본 연구에서는 FDTD와 광선추적기법을 결합한 시뮬레이션을 활용해 광원으로 설정된 쌍극자의 진동 방향, 유리기판에 적용된 Mie 산란입자와 Pillow 렌즈가 광결정 구조가 포함된 OLED의 광추출효율에 미치는 영향을 조사하였다. 쌍극자 광원의 진동방향이 OLED 표면에 대해 수평인 경우, 광결정구조만 적용된 OLED의 효율이 54%인데 반해 최적화된 조건의 Mie 산란입자, Pillow 렌즈가 적용된 OLED는 약 86%의 광추출효율을 나타냈다. 아울러 광결정 구조로 인해 특정 각도로 광도가 증가하는 문제점이 Mie 산란입자의 산란효과로 인해 완화될 수 있음을 알았다. 본 연구는 광추출효율을 향상시키는 다양한 광학구조를 적용함과 더불어 발광체 유기분자의 배향을 조절함으로써 OLED의 효율을 큰 폭으로 향상시킬 수 있음을 보여준다.

Simulation of the Structural Parameters of Anti-resonant Hollow-core Photonic Crystal Fibers

  • Li, Qing;Feng, Yujun;Sun, Yinhong;Chang, Zhe;Wang, Yanshan;Peng, Wanjing;Ma, Yi;Tang, Chun
    • Current Optics and Photonics
    • /
    • 제6권2호
    • /
    • pp.143-150
    • /
    • 2022
  • Anti-resonant hollow-core photonic crystal fiber (AR-HCF) has unique advantages, such as low nonlinearity and high damage threshold, which make it a promising candidate for high-power laser delivery at distances of tens of meters. However, due to the special structure, optical properties such as mode-field profile and bending loss of hollow-core fibers are different from those of solid-core fibers. These differences have limited the widespread use of AR-HCF in practice. In this paper we conduct numerical analysis of AR-HCFs with different structural parameters, to analyze their influences on an AR-HCF's optical properties. The simulation results show that with a 23-㎛ air-core diameter, the fundamental mode profile of an AR-HCF can well match that of the widely used Nufern's 20/400 fiber, for nearly-single-mode power delivery applications. Moreover, with the ratio of cladding capillary diameter to air-core diameter ranging from 0.6 to 0.7, the AR-HCF shows excellent optical characteristics, including low bending sensitivity while maintaining single-mode transmission at the same time. We believe these results lay the foundation for the application of AR-HCFs in the power delivery of high power fiber laser systems.

최대 광밴드갭을 위한 2차원 광결정 구조 (Polarization-Independent 2-Dimensional Photonic Crystal Structure for Maximum Bandgap)

  • 성준호;오범환;이승걸;박세근;이일항
    • 한국광학회지
    • /
    • 제16권3호
    • /
    • pp.261-265
    • /
    • 2005
  • 광자결정의 밴드갭이 크면서도 모든 편광방향에 대해 동일하게 설계될 수 있다면, 이러한 광밴드갭은 다양한 소자의 응용에 있어 보다 유용해 질 수 있다. 현재까지는 원형의 공기구멍으로 이루어진 삼각격자 구조가 가장 큰 광밴드갭을 갖는 것으로 알려져 왔으나, 본 논문에서는 각종 구조적 변화에 의한 밴드갭의 변화경향을 분석하고 체계화함에 따라, 모든 편광방향에 대해 광밴드갭이 동일하면서 가장 크게 되는 새로운 격자구조를 제안하였다. 이 구조의 광밴드갭 비율$(\Delta\omega/\omega)$은 기존의 삼각격자에 비해 약 $30\%$ 정도 증대된 것임을 확인하였다.