• 제목/요약/키워드: photon beam data

검색결과 86건 처리시간 0.024초

Photon Beam Commissioning for Monte Carlo Dose Calculation

  • Cho, Byung-Chul;Park, Hee-Chul;Hoonsik Bae
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.106-108
    • /
    • 2002
  • Recent advances in radiation transport algorithms, computer hardware performance, and parallel computing make the clinical use of Monte Carlo based dose calculations possible. Monte Carlo treatment planning requires accurate beam information as input to generate accurate dose distributions. The procedures to obtain this accurate beam information are called "commissioning", which includes accelerator head modeling. In this study, we would like to investigate how much accurately Monte Carlo based dose calculations can predict the measured beam data in various conditions. The Siemens 6MV photon beam and the BEAM Monte Carlo code were used. The comparisons including the percentage depth doses and off-axis profiles of open fields and wedges, output factors will be presented.

  • PDF

국내 의료기관들의 광자 빔 데이터의 비교 분석 및 치료계획 시스템 정도관리자료 (Comparison and Analysis of Photon Beam Data for Hospitals in Korea and Data for Quality Assurance of Treatment Planning System)

  • 이레나;조병철;강세권
    • 한국의학물리학회지:의학물리
    • /
    • 제17권3호
    • /
    • pp.179-186
    • /
    • 2006
  • 목적: 방사선 종양학과에서 사용되고 있는 선형가속기의 광자선 빔 데이터를 수집하여 비교 분석하였으며 치료계획용 시스템에 대한 간단한 정도관리 방법을 제시하였다. 대상 및 방법: 국내 26개 방사선 치료기관을 대상으로 출력교정 조건, 출력인자, 쐐기인자, 깊이 선량분포, 측방선량분포 및 선질에 대한 데이터를 수집하였다. 치료계획용 시스템의 선량계산의 정확성을 확인하기 위하여 10가지 광자선 치료 조건(정방형/직사각형/부정형 조사면, 쐐기필터 조사면, 축이탈 선량계산, SSD 변화)에 대한 선량계산을 치료계획용 시스템을 이용하여 시행하였으며 치료계획용 시스템을 이용하여 계산된 모니터 값과 수 계산에 의한 결과를 비교 분석하였다. 결과: 광자선 선질은 6 MV, 10 MV 및 15 MV에 대해 각각 $0.576{\pm}0.005,\;0.632{\pm}0.004$$0.647{\pm}0.006$이다. 최대선량 깊이에서 조사면의 크기에 따른 출력상수의 평균값은 6 MV 광자선의 경우 $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm$에 대해 $0.944{\pm}0.006,\;1.031{\pm}0.006,\;1.055{\pm}0.007$이다. 10 MV 광자의 경우는 조사면의 크기가 $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm$에 대해 각각 $0.935{\pm}0.006,\;1.031{\pm}0.007,\;1.054{\pm}0.0005$이다. 15 MV의 경우는 수집된 데이터의 수가 많지 않지만 $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm$에 대해 $0.941{\pm}0.008,\;1.032{\pm}0.004,\;1.049{\pm}0.014$이다. 치료 계획용 시스템과 수 계산에 의한 MU값의 계산 비교결과 7개 기관의 값이 허용오차 범위를 벗어났다. 쐐기를 제외한 8가지 조건에서 계산된 평균 MU값들은 SAD 조건으로 출력 교정된 장비가 SSD 조건으로 교정된 장비에 비해 6 MV 광자선은 3 MU, 10 MV 광자선은 5 MU 정도 더 높았다. 쐐기를 사용할 경우 MU값은 Varian사 장비와 Siemens사의 장비에 따라 다르고 동일 각의 쐐기를 사용할 경우 Siemens사의 쐐기를 사용할 때 MU값이 크다. 결론: 수집된 광자선 빔 데이터를 분석하여 빔데이터의 정확성과 치료계획용 시스템의 계산 정확성을 대략적으로 점검 할 수 있는 기준 값을 제시하였다.

  • PDF

Dose Calculation of Photon Beam with Wedge Filter for Radiation Therapy Planning System

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.41-41
    • /
    • 2003
  • Purpose: Even if the wedge filter is widely used for the radiation therapy to modify the photon beam intensity, the wedged photon beam dose calculation is not so easy. Radiation therapy planning systems (RTPS) have been used the empirical or semi-analytical methods such as attenuation method using wedge filter parameters or wedge filter factor obtained from measurement. However, these methods can cause serious error in penumbra region as well as in edge region. In this study, we propose the dose calculation algorithm for wedged field to minimize the error especially in the outer beam region. Materials and Method: Modified intensity by wedge filter was calculated using tissue-maximum ratio (TMR) and scatter-maximum ratio (SMR) of wedged field. Profiles of wedged and non-wedged direction was also used. The result of new dose calculation was compared with measurement and the result from attenuation method. Results: Proposed algorithm showed the good agreement with measurement in the high dose-gradient region as well as in the inner beam region. The error was decreased comparing to attenuation method. Conclusion: Although necessary beam data for the RTPS commissioning was increased, new algorithm would guarantee the improved dose calculation accuracy for wedged field. In future, this algorithm could be adopted in RTPS.

  • PDF

Monte Carlo Algorithm-Based Dosimetric Comparison between Commissioning Beam Data across Two Elekta Linear Accelerators with AgilityTM MLC System

  • Geum Bong Yu;Chang Heon Choi;Jung-in Kim;Jin Dong Cho;Euntaek Yoon;Hyung Jin Choun;Jihye Choi;Soyeon Kim;Yongsik Kim;Do Hoon Oh;Hwajung Lee;Lee Yoo;Minsoo Chun
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.150-157
    • /
    • 2022
  • Purpose: Elekta synergy® was commissioned in the Seoul National University Veterinary Medical Teaching Hospital. Recently, Chung-Ang University Gwang Myeong Hospital commissioned Elekta Versa HDTM. The beam characteristics of both machines are similar because of the same AgilityTM MLC Model. We compared measured beam data calculated using the Elekta treatment planning system, Monaco®, for each institute. Methods: Beam of the commissioning Elekta linear accelerator were measured in two independent institutes. After installing the beam model based on the measured beam data into the Monaco®, Monte Carlo (MC) simulation data were generated, mimicking the beam data in a virtual water phantom. Measured beam data were compared with the calculated data, and their similarity was quantitatively evaluated by the gamma analysis. Results: We compared the percent depth dose (PDD) and off-axis profiles of 6 MV photon and 6 MeV electron beams with MC calculation. With a 3%/3 mm gamma criterion, the photon PDD and profiles showed 100% gamma passing rates except for one inplane profile at 10 cm depth from VMTH. Gamma analysis of the measured photon beam off-axis profiles between the two institutes showed 100% agreement. The electron beams also indicated 100% agreement in PDD distributions. However, the gamma passing rates of the off-axis profiles were 91%-100% with a 3%/3 mm gamma criterion. Conclusions: The beam and their comparison with MC calculation for each institute showed good performance. Although the measuring tools were orthogonal, no significant difference was found.

A Commissioning of 3D RTP System for Photon Beams

  • Kang, Wee-Saing
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.119-120
    • /
    • 2002
  • The aim is to urge the need of elaborate commissioning of 3D RTP system from the firsthand experience. A 3D RTP system requires so much data such as beam data and patient data. Most data of radiation beam are directly transferred from a 3D dose scanning system, and some other data are input by editing. In the process inputting parameters and/or data, no error should occur. For RTP system using algorithm-bas ed-on beam-modeling, careless beam-data processing could also cause the treatment error. Beam data of 3 different qualities of photon from two linear accelerators, patient data and calculated results were commissioned. For PDD, the doses by Clarkson, convolution, superposition and fast superposition methods at 10 cm for 10${\times}$10 cm field, 100 cm SSD were compared with the measured. An error in the SCD for one quality was input by the service engineer. Whole SCD defined by a physicist is SAD plus d$\sub$max/, the value was just SAD. That resulted in increase of MU by 100${\times}$((1_d$\sub$max//SAD)$^2$-1)%. For 10${\times}$10 cm open field, 1 m SSD and at 10 cm depth in uniform medium of relative electron density (RED) 1, PDDs for 4 algorithms of dose calculation, Clarkson, convolution, superposition and fast-superposition, were compared with the measured. The calculated PDD were similar to the measured. For 10${\times}$10 cm open field, 1 m SSD and at 10 cm depth with 5 cm thick inhomogeneity of RED 0.2 under 2 cm thick RED 1 medium, PDDs for 4 algorithms were compared. PDDs ranged from 72.2% to 77.0% for 4 MV X-ray and from 90.9% to 95.6% for 6 MV X-ray. PDDs were of maximum for convolution and of minimum for superposition. For 15${\times}$15 cm symmetric wedged field, wedge factor was not constant for calculation mode, even though same geometry. The reason is that their wedge factor is considering beam hardness and ray path. Their definition requires their users to change the concept of wedge factor. RTP user should elaborately review beam data and calculation algorithm in commissioning.

  • PDF

6MV Photon Beam Commissioning in Varian 2300C/D with BEAM/EGS4 Monte Carlo Code

  • Kim, Sangroh;Jason W. Sohn;Cho, Byung-Chul;Suh, Tae-Suk;Choe, Bo-Yong;Lee, Hyoung-Koo
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.113-115
    • /
    • 2002
  • The Monte Carlo simulation method is a numerical solution to a problem that models objects interacting with other objects or their environment based upon simple object-object or object-environment relationships. In spite of its great accuracy, It was turned away because of long calculation time to simulate a model. But, it is used to simulate a linear accelerator frequently with the advance of computer technology. To simulate linear accelerator in Monte Carlo simulations, there are many parameters needed to input to Monte Carlo code. These data can be supported by a linear accelerator manufacturer. Although the model of a linear accelerator is the same, a different characteristic property can be found. Thus, we performed a commissioning process of 6MV photon beam in Varian 2300C/D model with BEAM/EGS4 Monte Carlo code. The head geometry data were put into BEAM/EGS4 data. The mean energy and energy spread of the electron beam incident on the target were varied to match Monte Carlo simulations to measurements. TLDs (thermoluminescent dosimeter) and radiochromic films were employed to measure the absorbed dose in a water phantom. Beam profile was obtained in 40cm${\times}$40cm field size and Depth dose was in 10cm${\times}$10cm. At first, we compared the depth dose between measurements and Monte Carlo simulations varying the mean energy of an incident electron beam. Then, we compared the beam profile with adjusting the beam radius of the incident electron beam in Monte Carlo simulation. The results were found that the optimal mean energy was 6MV and beam radius of 0.1mm was well matched to measurements.

  • PDF

Interpretation of two SINBAD photon-leakage benchmarks with nuclear library ENDF/B-VIII.0 and Monte Carlo code MCS

  • Lemaire, Matthieu;Lee, Hyunsuk;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1355-1366
    • /
    • 2020
  • A review of the documentation and an interpretation of the NEA-1517/74 and NEA-1517/80 shielding benchmarks (measurements of photon leakage flux from a hollow sphere with a central 14 MeV neutron source) from the SINBAD database with the Monte Carlo code MCS and the most up-to-date ENDF/B-VIII.0 neutron data library are conducted. The two analyzed benchmarks describe satisfactorily the energy resolution of the photon detector and the geometry of the spherical samples with inner beam tube, tritium target and cooling water circuit, but lack information regarding the detector geometry and the distances of shields and collimators relatively to the neutron source and the detector. Calculations are therefore conducted for a sphere model only. A preliminary verification of MCS neutron-photon calculations against MCNP6.2 is first conducted, then the impact of modelling the inner beam tube, tritium target and cooling water circuit is assessed. Finally, a comparison of calculated results with the libraries ENDF/B-VII.1 and ENDF/B-VIII.0 against the measurements is conducted and shows reasonable agreement. The MCS and MCNP inputs used for the interpretation are available as supplementary material of this article.

Mevatron KD 8067 선형가속기의 23 MV 광자선의 특성 (Characteristics of 23 MV Photon Beam from a Mevatron KD 8067 Dual Energy Linear Accelerator)

  • 김옥배;최태진;김영훈
    • Radiation Oncology Journal
    • /
    • 제8권1호
    • /
    • pp.115-124
    • /
    • 1990
  • 고 에너지 23MV광자선의 특성 중 임상적용에 중요한 심부선량 백분율, 조직-최대선량비 (TMR), 산란-최대선량비 (SMR), 표면선량 및 출력선량 보정계수등의 변수가 이온전리 (IC-10)함 및 평행 평판전리 (PS-033)함에 의해 측정 조사되었다. 명목상의 23 MV X-선에 대한 가속에너지는 $18.5\pm0.5$ MV로 측정되었다. Mevatron KD 8067의 23 MV X-선의 중심선속의 반가층이 기하학적인 좁은 선속으로 측정되었으며 반가층의 두께는 $24.5\;g/cm^2$이었다. 조직-최대선량비는 심부선량백분율표에서 구해졌으며, 실측치와 비교한 결과 각 조사면의 크기와 깊이에서 약간의 차이를 보였으나 평균 $0.7\pm0.5$의 오차를 나타내고 있어 계산에 의한 TMR 값과 잘 일치함을 보였다. 조사면 $0\times0\;cm^2$의 TMR 값은 zero 조사면의 유효감약계수에 의한 값과, 각 조사면의 조직-최대 선량비로 부터 비선형최소자승법에 의해 구해진 유효선흡수계수 및 반가층 측정에 의한 유효선흡수 계수에 의한 값들로 비교되었으며, $\mu=0.0283{\pm}0,0002cm^{-1}$을 보였고, 세 방법 모두 오차범위내에서 잘 일치됨을 보였다. 한편, 불규칙 조사면의 선량계산에 이용될 SMR은 조사면의 반경 50cm까지 계산되어 대형 조사 면에서도 선량율 산출이 이루어지도록 하였다. Mevatron KD 8067의 23 MV X-선의 조직 표면선량은 SSD 100 cm, 1$10\times10\;cm^2$의 조사면에서 최대조직선량율의 $9.6\%,\;25\times25\;cm^2$에서는 $25.4\%$를 보였다.

  • PDF

표피로 부터 buildup 영역까지 흡수되는 암치료용 방사선의 선량분석 (Analysis of dose from surface to near the buildup region in the therapeutic X-ray beam)

  • Vahc, Young-Woo
    • 한국의학물리학회지:의학물리
    • /
    • 제6권2호
    • /
    • pp.41-50
    • /
    • 1995
  • 암치료용 방사선 (15 MV의 에너지를 갖는 광자선) 속에 있는 흡수선량과 불순전자 또는 산란 광자에 관한 분포를 광자선 면적 크기에 따른 변화와 광자선 면적을 반만 차폐시킨 선속에 대하여 연구 조사하였다. 광자선의 에너지를 15MV로 주어질때 광자선 최대 흡수깊이 $d^{max}$ 값은 광자선의 면적을 증가시키면 시킬수록(5$\times$5 에서 30$\times$30$\textrm{cm}^2$)d$_{max}$ 값은 감소된다. 이는 광자선 즉 방사선을 발생시키는 가속기 기계 속에 있는 여러 부품 (flattening filter, collimator jaws, tray holder,……)과 상호작용하여 형성된 불순전자로 인하여 d$_{max}$ 값이 표피쪽으로 이동되어 buildup 영역에 높은 선량흡수를 갖게 된다. 최대 흡수깊이 값을 계산할 때 이러한 현상을 고려하지 않으면 그릇된 data 값을 갖는다. 대부분의 불순 전자는 광자선 중심에 주로 분포하며 그 진행거리는 30.0mm 이하의 짧은 거리를 갖는다. 이 불순전자가 30.0mm이내(즉 buidup 영역)에 전부 흡수되므로 buidup 영역은 높은 선량흡수를 갖게되어 해를 주게된다. 그러므로 이러한 불순전자를 제거시키므로서 buidup 영역에 낮은 선량 흡수를 갖을 뿐 아니라 d$_{max}$ 값도 역시 깊은 곳까지 이동시켜 치료에 효과적인 방법 이 창출된다.

  • PDF

Development of an Optical Tissue Clearing Laser Probe System

  • Yeo, Changmin;Kang, Heesung;Bae, Yunjin;Park, Jihoon;Nelson, J. Stuart;Lee, Kyoung-Joung;Jung, Byungjo
    • Journal of the Optical Society of Korea
    • /
    • 제17권4호
    • /
    • pp.289-295
    • /
    • 2013
  • Although low-level laser therapy (LLLT) has been a valuable therapeutic technology in the clinic, its efficacy may be reduced in deep tissue layers due to strong light scattering which limits the photon density. In order to enhance the photon density in deep tissue layers, this study developed an optical tissue clearing (OTC) laser probe (OTCLP) system which can utilize four different OTC methods: 1) tissue temperature control from 40 to $10^{\circ}C$; 2) laser pulse frequency from 5 to 30 Hz; 3) glycerol injection at a local region; and 4) a combination of the aforementioned three methods. The efficacy of the OTC methods was evaluated and compared by investigating laser beam profiles in ex-vivo porcine skin samples. Results demonstrated that total (peak) intensity at full width at half maximum of laser beam profile when compared to control data was increased: 1) 1.21(1.39)-fold at $10^{\circ}C$; 2) 1.22 (1.49)-fold at a laser pulse frequency of 5 Hz; 3) 1.64 (2.41)-fold with 95% glycerol injection; 4) 1.86 (3.4)-fold with the combination method. In conclusion, the OTCLP system successfully improved the laser photon density in deep tissue layers and may be utilized as a useful tool in LLLT by increasing laser photon density.