• Title/Summary/Keyword: photomask fabrication

Search Result 23, Processing Time 0.024 seconds

Laser Process Proximity Correction for Improvement of Critical Dimension Linearity on a Photomask

  • Park, Jong-Rak;Kim, Hyun-Su;Kim, Jin-Tae;Sung, Moon-Gyu;Cho, Won-Il;Choi, Ji-Hyun;Choi, Sung-Woon
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.188-194
    • /
    • 2005
  • We report on the improvement of critical dimension (CD) linearity on a photomask by applying the concept of process proximity correction to a laser lithographic process used for the fabrication of photomasks. Rule-based laser process proximity correction (LPC) was performed using an automated optical proximity correction tool and we obtained dramatic improvement of CD linearity on a photomask. A study on model-based LPC was executed using a two-Gaussian kernel function and we extracted model parameters for the laser lithographic process by fitting the model-predicted CD linearity data with measured ones. Model-predicted bias values of isolated space (I/S), arrayed contact (A/C) and isolated contact (I/C) were in good agreement with those obtained by the nonlinear curve-fitting method used for the rule-based LPC.

  • PDF

Facile Fabrication of Micro-scale Photomask and Microfluidic Channel Mold for Sensor Applications Using a Heat-shrink Polymer

  • Sung-Youp Lee;Kiwon Yang;Jong-Goo Bhak;Young-Soo Sohn
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.280-284
    • /
    • 2023
  • In this study, a prototype micro-scale photomask and microfluidic channel mold were fabricated using the thermal shrinkage of the polymer. A polystyrene (PS) sheet was used as the heat-shrink polymer, and the patterns of the photomask and microchannel are interdigitated electrodes. Patterns were formed on the PS sheets using a commercial laser printer. The contraction ratio of the PS sheet was approximately 60% at a temperature of 150 ℃, and the transmittance was reduced by approximately 0% at a wavelength of 365 nm. The microfluidic channel had a round shape. The proposed technique is simple, facile, and inexpensive for fabricating a micro-scale photomask and microfluidic channel mold and does not involve the use of any harmful materials. Thus, this technique is well-suited for fabricating diverse micro-scale patterns and channels for prototype devices, including sensors.

Development of Rapid Mask Fabrication Technology for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 쾌속 마스크 제작기술의 개발)

  • Lee, Seung-Pyo;Ko, Tae-Jo;Kang, Hyun-Wook;Cho, Dong-Woo;Lee, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.138-144
    • /
    • 2008
  • Micro-machining of a brittle material such as glass, silicon, etc., is important in micro fabrication. Particularly, micro-abrasive jet machining (${\mu}-AJM$) has become a useful technique for micro-machining of such materials. The ${\mu}-AJM$ process is mainly based on the erosion of a mask which protects brittle substrate against high velocity of micro-particle. Therefore, fabrication of an adequate mask is very important. Generally, for the fabrication of a mask in the ${\mu}-AJM$ process, a photomask based on the semi-conductor fabrication process was used. In this research a rapid mask fabrication technology has been developed for the ${\mu}-AJM$. By scanning the focused UV laser beam, a micro-mask pattern was fabricated directly without photolithography process and photomask. Two kinds of mask patterns were fabricated using SU-8 and photopolymer (Watershed 11110). Using fabricated mask patterns, abrasive-jet machining of Si wafer were conducted successfully.

Fabrication of Periodically Poled Lithium Niobate by Direct Laser-Writing and Its Poling Quality Evaluation

  • Dwivedi, Prashant Povel;Cha, Myoungsik
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.762-765
    • /
    • 2014
  • We fabricated a periodically poled lithium niobate (PPLN) by direct laser-writing of a quasi-phase-matching (QPM) structure in photolithographic process. Because we do not need to prepare a photomask by electron-beam writing, the "maskless" process shortens the fabrication time and significantly reduces the cost. We evaluated the poling quality of the direct laser-written PPLN by measuring the diffraction noise from the surface relief pattern of the fabricated QPM grating and comparing the results to those from a conventional PPLN made with a photomask. The quality of the PPLN fabricated by direct laser-writing was shown to be equivalent to that fabricated by the conventional method.

Selective surface modification for biochip with micromirror array (마이크로미러를 사용한 바이오칩의 선택적 표면 개질을 위한 광변조 실험)

  • Lee, Kook-Nyung;Sin, Dong-Sik;Lee, Yoon-Sik;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2257-2259
    • /
    • 2000
  • This paper reports on the design, fabrication and driving experiment of micro mirror array(MMA) for lithography process to apply to biochip fabrication Photolithography technology is applied to activate specific area on the surface of modified glass surface, DNA monomers are bound on the activated area of the glass surface. After repeat of DNA monomer synthesizing process, DNA single strand probes could be solid-synthesized on the glass substrate. Without using photomask, photolithography process is tried using micro mirror array(MMA). Photomask or mask alignment is not required in maskless photolithography process using micro mirror array.

  • PDF

Fabrication of Multimode Transflective Liquid Crystal Display using the Photoalignment Technique with a Self-Masking Process

  • Yu, Chang-Jae;Kim, Jin-Yool;Kim, Dong-Woo;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.834-838
    • /
    • 2004
  • We report on a simple method of fabricating multimode transflective liquid crystal displays (LCDs) using the photoalignment technique. Using a self-masking process of ultraviolet light by the reflector as a photomask as well as a reflective mirror, the periodic multimode is obtained with no additional fabrication processes. Moreover, variations of the cell gap are not required for such trasflective LCDs

  • PDF

Fabrication of V-grooved Mold for the Light Guide Plate of TFT-LCD with MEMS Technology

  • Lee, Woon-Seob;Han, Man-Hee;Lee, Sung-Keun;Lee, Seung-S
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.994-996
    • /
    • 2002
  • We present a novel fabrication method for a V-grooved mold of the light guide plat of TFT-LCD with MEMS technology. This method is performed by the inclined UV lithography and Ni electroplating unlike the previous mechanical processing technique. V-grooves with different dimension can be made simultaneously with single photomask.

  • PDF

Study on Aluminum Frame Surface Cleaning Process for Photomask Pellicle Fabrication (포토마스크 펠리클 제조를 위한 Aluminum Frame 표면 세정공정 연구)

  • Kim, Hyun-Tae;Kim, Hyang-Ran;Kim, Min-Su;Lee, Jun;Jang, Sung-Hae;Choi, In-Chan;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.462-467
    • /
    • 2015
  • Pellicle is defined as a thin transparent film stretched over an aluminum (Al) frame that is glued on one side of a photomask. As semiconductor devices are pursuing higher levels of integration and higher resolution patterns, the cleaning of the Al flame surface is becoming a critical step because the contaminants on the Al flame can cause lithography exposure defects on the wafers. In order to remove these contaminants from the Al frame, a highly concentrated nitric acid ($HNO_3$) solution is used. However, it is difficult to fully remove them, which results in an increase in the Al surface roughness. In this paper, the pellicle frame cleaning is investigated using various cleaning solutions. When the mixture of sulfuric acid ($H_2SO_4$), hydrofluoric acid (HF), hydrogen peroxide ($H_2O_2$), and deionized water with ultrasonic is used, a high cleaning efficiency is achieved without $HNO_3$. Thus, this cleaning process is suitable for Al frame cleaning and it can also reduce the use of chemicals.

Critical dimension uniformity improvement by adjusting etch selectivity in Cr photomask fabrication

  • O, Chang-Hun;Gang, Min-Uk;Han, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.213-213
    • /
    • 2016
  • 현재 반도체 산업에서는 디바이스의 고 집적화, 고 수율을 목적으로 패턴의 미세화 및 웨이퍼의 대면적화와 같은 이슈가 크게 부각되고 있다. 다중 패터닝(multiple patterning) 기술을 통하여 고 집적 패턴을 구현이 가능해졌으며, 이와 같은 상황에서 각 패턴의 임계치수(critical dimension) 변화는 패턴의 위치 및 품질에 큰 영향을 끼치기 때문에 포토마스크의 임계치수 균일도(critical dimension uniformity, CDU)가 제작 공정에서 주요 파라미터로 인식되고 있다. 반도체 광 리소그래피 공정에서 크롬(Cr) 박막은 사용되는 포토 마스크의 재료로 널리 사용되고 있으며, 이러한 포토마스크는 fused silica, chrome, PR의 박막 층으로 이루어져 있다. 포토마스크의 패턴은 플라즈마 식각 장비를 이용하여 형성하게 되므로, 식각 공정의 플라즈마 균일도를 계측하고 관리 하는 것은 공정 결과물 관리에 필수적이며 전체 반도체 공정 수율에도 큰 영향을 미친다. 흔히, 포토마스크 임계치수는 플라즈마 공정에서의 라디칼 농도 및 식각 선택비에 의해 크게 영향을 받는 것으로 알려져 왔다. 본 연구에서는 Cr 포토마스크 에칭 공정에서의 Cl2/O2 공정 플라즈마에 대해 O2 가스 주입량에 따른 식각 선택비(etch selectivity) 변화를 계측하여 선택비 제어를 통한 Cr 포토마스크 임계치수 균일도 향상을 실험적으로 입증하였다. 연구에서 사용한 플라즈마 계측 방법인 발광분광법(OES)과 optical actinometry의 적합성을 확인하기 위해서 Cl2 가스 주입량에 따른 actinometer 기체(Ar)에 대한 atomic Cl 농도비를 계측하였고, actinometry 이론에 근거하여 linear regression error 1.9%을 보였다. 다음으로, O2 가스 주입비에 따른 Cr 및 PR의 식각률(etch rate)을 계측함으로써 식각 선택비(etch selectivity)의 변화율이 적은 O2 가스 농도 범위(8-14%)를 확인하였고, 이 구간에서 임계치수 균일도가 가장 좋을 것으로 예상할 수 있었다. (그림 1) 또한, spatially resolvable optical emission spectrometer(SROES)를 사용하여 플라즈마 챔버 내부의 O atom 및 Cl radical의 공간 농도 분포를 확인하였다. 포토마스크의 임계치수 균일도(CDU)는 챔버 내부의 식각 선택비의 변화율에 강하게 영향을 받을 것으로 예상하였고, 이를 입증하기 위해 각각 다른 O2 농도 환경에서 포토마스크 임계치수 값을 확인하였다. (표1) O2 11%에서 측정된 임계치수 균일도는 1.3nm, 그 외의 O2 가스 주입량에 대해서는 임계치수 균일도 ~1.7nm의 범위를 보이며, 이는 25% 임계치수 균일도 향상을 의미함을 보인다.

  • PDF

Fabrication of embedded bottom electrodes for submicron beam resonators (서브마이크론 빔 레조네이터 제작을 위한 바닥전극 형성방법)

  • Lee, Yong-Seok;Jang, Yun-Ho;Bang, Yong-Seung;Kim, Jung-Mu;Kim, Jong-Man;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.131-132
    • /
    • 2008
  • We describe a fabrication method of submicron glass trenches which have embedded metal lines for the future application of nano-scale RF MEMS devices. The glass wafer was etched using two different conditions to identify the relationship between the slope of glass trenches and the slope of photroresist. A self-aligned metal photomask and negative photroresist (PR) slope were used to insert metal lines inside the glass trenches. The PR slope patterned by backside photolithography was affected by the profile of preformed glass trenches. Gold was well fabricated in the $0.7{\mu}m$ wide trench thanks to the negative PR slope. Nano-scale glass trenches with embedded metal lines can be used as a bottom electrode in submicron beam resonators operating with a high resonant frequency.

  • PDF