• Title/Summary/Keyword: photoelastic study

Search Result 119, Processing Time 0.033 seconds

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION ON THE MULTILOOP EDGEWISE ARCH WIRE (Multiloop Edgewise Arch Wire의 응력분포에 대한 광탄성학적 연구)

  • Lee, Sheung-Ho;Kim, Jeong-Gee
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.969-982
    • /
    • 1994
  • This study was designed to investigate the stress distribution, intensity and force mechanism derived from the MEAW by photoelastic stress analysis of the artificial teeth and surrounding bone composed of photoelastic material(PL-3) The findings of this study were as follows, 1. In case of no elastic on the MEAW with tip back, the moderate stress was observed on the molar and canine area, and the light stress was observed on the other area. 2. In case of the vertical elastic on the plain A.W, and the MEAW without tip back, the great stress was observed on the lateral incisor area, but on the MEAW with tip back, the moderate stress was observed on the anterior area and molar area. 3. In case of the C III elastic on plain A.W., the stress was concentrated on the anterior area hanged by elastic but on the MEAW without tip back, the stress was transmitted equally from the anterior area to the posterior teeth area. On the MEAW with tip back, the great stress was observed on the anterior and molar area. 4. In case of the C III elastic on the plain A.W., the stress was concentrated on the posterior area hanged by elastic but on the MEAW without tip back, the stress was transmitted equally from the posterior area to the anterior area. On the MEAW with tip back, the great stress was observed on the posterior area and the moderate stress was observed on the anterior area.

  • PDF

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION IN THE ALVEOLAR BONE BY VARIOUS MOLAR UPRIGHTING SPRINGS (Molar Uprighting Spring에 의해 발생되는 치조골내의 응력분포에 관한 광탄성학적 연구)

  • Choi, Jin-Hugh;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.21 no.2 s.34
    • /
    • pp.353-366
    • /
    • 1991
  • This study was performed to analyze the effects of forces to the alveolar bone by various molar uprighting spring such as helical uprighting spring. T-loop spring, Modified T-loop spring and open coil spring. The simplified two-dimensional photoelastic model was constructed with a lower left posterior quadrant containing the second molar, the first and second premolars and the canine, with the first molar missing. Several molar uprighting springs were fabricated from 0.017 by 0.022 inch blue Elgiloy and applied to the photoelastic model. Two-dimensional photoelastic stress analysis was performed, and the stress distribution was recorded by photography The results obtained were as follows; 1. In all the kinds of the springs, the center of rotation of the mandibular second molar was oserved at the apical 1/5-1/6 between the alveolar crest and the root apex. 2. In all the kinds of the spring, the stress induced in the mesial root surface of the mandibular second molar was relatively homogeneous but there was some difference in the magnitude of the stress. 3. In the kinds of the springs, the distal crown tipping moment of the second molar was increased in turn as open coil spring, helical uprighting spring, T-loop spring, and modified T-loop spring. 4. The largest extrusive force was occured in the T-loop spring, intrusive force was occured in Modified T-loop spring only, and the largest distal tipping force was occured in open coil spring. 5. In the T-loop spring with activation, the stress induced in the mesial root surface of the second molar was increased gradually from the root apex to the alveolar crest and highly concentrated in the alveolar crest.

  • PDF

A PHOTOELASTIC STUDY ON THE STRESS ANALYSIS UNDER MADIBULAR DISTAL-EXTENSION REMOVABLE PARTIAL DENTURE WITH DIFFERENT DESIGN OF THE MAJOR CONNECTOR (주 연결장치의 설계변화에 따른 하악 유리단 국소의치의 광탄성 응력 분석에 관한 연구)

  • Lee, Kyw-Chil;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.177-194
    • /
    • 1991
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from a distal extension removable partial dentures with three kinds of mandibular major connectors, that is, lingual bar, linguoplate, and swing-lock attachment. A photoelastic model was made of the epoxy resin(PC-1) and hardener(PCH-1) and coated with plastic cement-1 (PC-1) at the lingual surface of the epoxy model and set with three kinds of chrome-cobalt removable partial dentures. A bilateral vertical load of 15kg to the middle portion of the metal bar crossing both the first molars of the right and the left, and a unilateral vertical load of 12.5kg to the right first molar were applied with the use of specially designed loading device and the reflective circular polariscope was used to analyze the photoelastic model under each condition. The following results were obtained : 1. When the bilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 2. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the edentulous area and the terminal abutment or adjacent teeth was in the order of lingual bar, linguoplate, swing-lock attachment. 3. When the unilateral vertical load was applied, the magnitude and distribution of the stress concentration of the termial abutment or adjacent teeth on the non-loaded side showed the least stress distribution in case of swing-lock attachment. 4. When the bilateral vertical load and the unilateral vertical load were applied the swing-lock attachment showed the mildest uniform stress distribution on the edentulous area and the alveolar bone around the abutment teeth.

  • PDF

Photoelastic Stress Analysis of Proximal Margins in Dental Restorations (치관보철물(齒冠補綴物)의 인접변연부위(隣接邊緣部位)에 작용(作用)하는 Stress에 관(關)한 광탄성학적(光彈性學的) 분석(分析))

  • Lim, Chung-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.37-47
    • /
    • 1980
  • The purpose of this study was to investigate the stresses in different proximal margins and to measure, quantitatively, the effect of different modifications in the design of preparations on the stresses using two-dimensional photoelasticity. Photoelastic stress analysis is based on the phenomenon, exhibited by most transparent solids, of becoming birefringent, or doubly refracting, when strained. Two birefringent materials were used in this study, PSM-1 and PSM-5 in .standard sheet ($10'{\times}10'{\times}\frac{1}{4}'$ thickness), PSM-1(polyester) was used for constructing the substructure, and PSM-5(epoxy resin) was used in making the restorations to be investigated. Two birefringent materials were used in the construction of composite photoelastic model. Seven variable models were constructed. The peripheral dimensions of all model were constant and the models represent an occlusomesial section of a lower posterior molar. Model 1 represents the knife edge margin (shoulderless), Model 2 represents the chamfer, Model 3 represents a rounded shoulder(no sharp angle between the axial wall and gingival floor), Model 4 represents a flat shoulder (axial wall is a $90^{\circ}$ angle to the gingival wall), Model 5 represents $+15^{\circ}$ angulation, Model 6 has a $-15^{\circ}$ angulation, and Model 7 is the same as Model 4 except that it has a $45^{\circ}$ bevel. Improved artificial stone was used to represent dental cement in luting the composite photoelastic model. Static loading procedures(100 pounds) were used at preplanned sites. The results were as follows; 1. The stresses in the proximal portion of all tested models were compressive in nature when the proximal shoulders were loaded vertically on the same proximal marginal ridge. 2. The round and chamfered preparations were the optimum designs in proximoocclusal restorations. They showed the lowest stress concentration factor, i.e. 2.16 and 2.23, respectively. The knife edged shoulder had the highest value, K=5.39. Round type shoulder geometry experiments reduced the stress concentration factor (S.C.F.) 3. The gingival portion of proximal shoulder geometry was a critical location for stress concentration.

  • PDF

Photoelastic Stress Analysis of Fixed Partial Dentures (가공의치(架工義齒)에 작용(作用)하는 Stress에 관(關)한 광탄성학적(光彈性學的) 분석(分析))

  • Cho, Won-Haeng
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.15-35
    • /
    • 1980
  • The purpose of this study was to investigate stresses in the various components of fixed partial dentures restoring the posterior teeth of the lower jaw, and to measure quantitatively the effects of certain modifications in structural design on the stresses in the restorations using two-dimensional photoelasticity. Two-dimensional photoelastic methods were used in this study. Several models of fixed partial dentures were constructed. Shoulder less margins and anatomic occlusal reduction were incorporated in Model 1. Rounded shoulders and flat occlusal reduction were incorporated in Model 2, while Model 3 was a cantilever fixed partial denture. Other similar fixed partial dentures were constructed with V and U notches deliverately included in the region of the fixed joints for comparative reasons. The birefringent materials used in this study were PSM-1 and PSM-5 in standard sheets. PSM-1 was used for constructing the substructure, and PSM-5 was used in making the components of the fixed partial dentures. The two materials were used in the construction of composite photoelastic models. Improved artificial stone was used to represent dental cement in luting the composite photoelastic models. Static loading procedures were used at preplanned sites to represent occlusal loads in the mouth. 35 mm color and B/W film were used to record isochromatics in accordance with photoelastic procedures. Data reduction was performed using the grid method, which helped in, the mathematical integration procedure (Shear difference method) to separate the principal stresses. The results were as follows. 1. Fixed partial dentures do not function in bending as a symmetrical beam. Alternate areas of tension and compression were demonstrated when multiple contact loading was used. 2. The weakest part in posterior fixed partial dentures is the fixed joint. 3. (1) Models I and modified Model I were loaded on the pontic using a 50 pound vertical static load. The shear stress near the posterior fixed joint in Model 1 (U notches) was+129.4 p.s.i., and at the same fixed joint in modified Model 1 (V notches) was+239.4 p.s.i. The concentration of stress in fixed joint was reduced by 50% when U notches replaced the V notches. (2) Modified Model 2 was loaded using a multiple contact loader at a total load of 125 pounds. The difference between the principal stresses (${\sigma}_1-{\sigma}_2$), shear stress, at the V notches was+600 p.s.i., and at the U notches was+3l7 p.s.i. The shear stress was reduced by 50% when U notches replaced the V notches. V-grooves at the fixed joints should be avoided, and should be replaced by regular shaped U-grooves. 4. Cantilever fixed partial dentures had much higher stresses at the fixed joint than fixed partial dentures that were attached at both ends.

  • PDF

Stress Measurement around a Circular Role in a Cantilever Beam under Bending Moment Using Strain Gage and Reflective Photoelasticity (스트레인 게이지와 반사형 광탄성법을 이용한 굽힘을 받는 외팔보 시편 구멍 주위의 응력측정)

  • Baek, Tae-Hyun;Park, Tae-Geun;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.329-335
    • /
    • 2006
  • It is necessary to study on the stress concentration experimentally, which is the main reason to avoid mechanical dilapidation and failure, when designing a mechanical structure. Stress concentration factor of a specimen of cantilever beam with a circular hole in the center was measured using both strain gage and photoelastic methods in this paper. In strain-gage measurement, three strain gages along the line near a hole of the specimen were installed and maximum strain was extrapolated from three measurements. In photoelastic measurement, two methods were employed. First, the Babinet-Soleil compensation method was used to measure the maximum strain. Secondly, photoelastic 4-step phase shilling method was applied to observe the strain distribution around the hole. Measurements obtained by different experiments were comparable within the range of experimental error.

PHOTOELASTIC STRESS ANALYSIS OF IMPLANTS ACCORDING TO FIXTURE DESIGN (임플랜트 고정체의 형태에 따른 광탄성 응력분석)

  • Mun So-Hee;Kim Nan-Young;Kim Yu-Lee;Cho Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the pattern and the magnitude of stress distribution in the supporting tissues surrounding three different types of implants(ITI, 3i. and Bicon implant system) Material and method: Photoelastic models were made with PL-2 resin(Measurements Group, Raleigh, USA) and three implants of each kind were placed in the mandibular posterior edentulous area distal to the canine. For non-splinted restorations, individual crowns were fabricated on three titanium abutments. For splinted restorations, 3-unit axed partial dentures were fabricated. Photoelastic stress analyses were carried out to measure the fringe order around the implant supporting structure under simulated loaded conditions(15 lb. 30 lb). Conclusion: The results were as follows; 1 Regardless of the implant design, stresses were increased in the apex region of loaded implant when non-splinted restorations were loaded. While relatively even stress distribution occurred with splinted restorations. Splinting was effective in the second implant. 2. Strain around Bicon implant were lower than those of other implants, which confirmed the splinting effect. The higher the load, the more the stress occurred in supporting tissue, which was most obvious in the Bicon system. 3. Stress distribution in the supporting tissue was favorable in the ITI system. while the other side of 3i system tended to concentrate the stress in some parts.

Accurate Measurement of Residual Stresses of Glass Rods by Photoelasticity (광탄성법에 의한 유리봉 잔류응력의 정밀측정)

  • Baek, Tae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1524-1533
    • /
    • 1996
  • Risidual stress of cylindrical glass rods are measured by photoelasticity to study the variation of stresses with respect to heat treatment temperatures. In order to measure the stresses accurately, fringe sharpening and multiplication techniques are applied to the determination of photoelastic fringe orders. Filon's separationmethod is used to resolve circumferential and redial stress ocmponents from isochromatic fringes which are the same as in-plane maximum shearing stresses. According to the photoelastic measurements, residual stress is increased as the heat treatment temperature of the rods is raised from $560^{\circ}C$ to $650^{\circ}C$ All the circumferential stress components are changed from tensile stresses to compressive ones at approximate $R_m$/$R_o$ = 0.6, where $R_o$/ is outer radius and $R_m$any measured radius. This analysis shows that residual stresses of the glass rods approach zero if the rods are heat-treated near the strain point.

A Photoelastic Study on the Stress Intensity Factor of Circular Disk with an Are-crack (광탄성법에 의한 원고형상크랙을 갖는 원판의 응력확대계수에 관한 연구)

  • Lee, Chi-Woo;Kim, Tae-Gyu;Yang, Jang-Hong;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.96-103
    • /
    • 1988
  • The stress distribution in the vicinity of the crack tip in the fracture mechanics is ordenarily indicated by the stress intensity factor. In the analysis of stress intensity factors, there are many theoretical and experimental methods. The stress analysis in photoelastic technique is usually made by using the difference of the principal stress of isochromatic fringe patterns. In this paper, the teflon molding technique is adopted to make a test specimen with a circular arc-crack, and that upgraded the accuracy of experiment. As the result, the experimental values of the stress intensity factors for the circular disk with a straight crack are coincided with the theoretical values. But, there is quite a difference between this expermental results on the finite plate for circular arc-crack and its theoretical values on the infinite one. Therefore, a boundary condition with regard to the loading condition on finite disk must be considered.

  • PDF

A PHOTOELASTIC STUDY ON THE INITIAL STRESS DISTRIBUTION OF THE MOLAR ANCHORING SPRING(MAS) DURING RETRACTION OF THE MAXILLARY CANINE (상악견치 후방견인시 저항원 조절을 위한 MAS(Molar Anchoring Spring)의 초기 응력분포에 관한 광탄성학적 연구)

  • Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.26 no.4
    • /
    • pp.341-348
    • /
    • 1996
  • The efficiency of maxillary canine retraction by means of sliding mechanics along an 0.016 continuous labial arch and an 0.009 inch in diameter with a lumen of 0.030 inch NiTi closed coil spring was compared with that using the same NiTi closed coil spring and Molar Anchoring Spring(MAS) which was designed by author. MAS was made of .017" X .025" TMA wire and was given 60 degree tip-back bend on the wire close to the molar tube. This study was designed to investigate molar and canine root control during retraction into an extraction site with continuous arch wire system. Two techniques were tested with a continuous arch model embedded in a photoelastic resin. A photoelastic model was employed to visualize the effects of forces applied to canine and molar by two retraction mechanics. With the aid of polarized light, stresses were viewed as colored fringes. The photoelastic overview of the upper right quadrant showed that stress concentrations were observed in its photoelastic model. The obtained results were as follows. 1. Higher concentration of compression can be seen clearly at the distal curvature of the canine and mesial curvature of the molar and premolar when NiTi closed coil spring was applied only, which means severe anchorage loss of the molar and uncontrolled tipping of the canine. 2. The least level compression was presented at the mesial root area of the molar and premolar, and mesial root area of the canine when NiTi closed coil spring and MAS were used simultaneously. Especially mesial alveolar crest region of the canine was shown moderate level of compression that means MAS can be used as a appliance for anchorage control and prevention of canine extrusion and uncontrolled tipping during canine retraction.

  • PDF