• Title/Summary/Keyword: photodynamic therapy (PDT)

Search Result 112, Processing Time 0.029 seconds

The Anticancer Effect and Mechanism of Photodynamic Therapy Using 9-Hydroxypheophorbide-a and 660 nm Diode Laser on Human Squamous Carcinoma Cell Line. (9-hydroxypheophorbide-a와 660 nm 다이오드 레이저를 이용한 광역학치료의 항암효과와 치료기전에 대한 연구)

  • Ahn, Jin-Chul
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.770-780
    • /
    • 2009
  • A new photosensitizer, 9-Hydroxypheophorbide-a (9-HpbD-a), was derived from Spirulina platensis. We conducted a series of experiments, in vitro and in vivo, to evaluate the anticancer effect and mechanism of photodynamic therapy using 9-HpbD-a and 660 nm diode lasers on a squamous carcinoma cell line. We studied the cytotoxic effects of pheophytin-a, 9-HpbD-a, 9-HpbD-a red and 660 nm diode lasers in a human head and neck cancer cell line (SNU-1041). Cell growth inhibition was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The effects of 9-HpbD was higher than those of 9-HpbD-a red or pheophytin-a in PDT. We then tested the cytotoxic effects of 9-hydroxypheophorbide-a (9-HpbD-a) in vitro. The cultured SNU-I041 cells were treated with serial concentrations of 9-HpbD-a followed by various energy doses (0, 0.1, 0.5, 3.2 J/$cm^{2}$) and by various interval times (0, 3, 6, 9, 12 hr) until laser irradiation, then MTT assay was applied to measure the relative inhibitory effects of photodynamic therapy (PDT). Optimal laser irradiation time was 30 minutes and the cytotoxic effects according to incubation time after 9-HpbD-a treatment increased until 6 hours, after which it then showed no increase. To observe the cell death mechanism after PDT, SUN-I041 cells were stained by Hoechst 33342 and propidium iodide after PDT, and observed under transmission electron microscopy (TEM). The principal mechanism of PDT at a low dose of 9-HpbD-a was apoptosis, and at a high dose of 9-HpbD-a it was necrosis. PDT effects were also observed in a xenografted nude mouse model. Group I (no 9-HpbD-a, no laser irradiation) and Group II (9-HpbD-a injection only) showed no response (4/4, 100%), and Group III (laser irradiation only) showed recurrence (1/4,25%) or no response (3/4, 75 %). Group IV (9-HpbD-a + laser irradiation) showed complete response (10/16, 62.5%), recurrence (4/16, 25%) or no response (2/16, 12.5%). Group IV showed a significant remission rate compared to other groups (p<0.05). These results suggest that 9-HpbD-a is a promising photosensitizer for the future and that further studies on biodistribution, toxicity and mechanism of action would be needed to use 9-HpbD-a as a photosensitizer in the clinical setting.

Photodynamic Therapy with Photofrin Reduces Invasiveness of U87 Malignant Human Glioma Cells (교모세포종 세포주 U87에서 Photofrin을 사용한 광역학 치료가 종양 침습성에 미치는 영향)

  • Woo, Hye Kyung;Cho, Kyung-Keun;Rha, Hyung Kyun;Lee, Kyung Jin;Park, Sung Chan;Cho, Jung Ki;Park, Hea Kwan;Kang, Joon Ki;Choi, Chang Rak
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.sup2
    • /
    • pp.189-196
    • /
    • 2001
  • Objective : We tested the hypothesis that photodynamic therapy(PDT) with Photofrin inhibits tumor invasion of U87 human glioma cells using several in vitro assay to measure tumor invasiveness. The effects of PDT on cell growth, directional migration and cell invasion were investigated. Material and Method : Tumor cells were treated with Photofrin at various doses and at a fixed optical(632nm) dose of $100mJ/cm^2$. Cytotoxicity was tested using the MTT method. Invasion assays including the matrigelartificial basement membrane barrier migration and spheroid confrontation with confocal microscopic analysis were used to study the relationship between PDT and invasiveness. Result : U87 cells showed a dose dependent cytotoxic response to increasing Photofrin dose. Data from the matrigel artificial basement membrane assay indicate that PDT inhibits the U87 cell migration dose dependently. Low doses of subcytotoxic PDT treatment, such as 2.5ug/ml Photofrin dose, also appeared to significantly inhibit migration of U87 cells(p<0.05). In co-cultures between U87 cell spheroids and brain aggregates, progressive invasion with destruction of the brain aggregate occurs. The extent of tumor cell infiltration and proportion or intact brain aggregate remaining after 24h differs in Photofrin PDT treated versus Photofrin only control, with changes suggestive of a dose-response effect. Conclusion : our data indicate that PDT with Photofrin significantly inhibits the invasiveness of U87 cells, and this inhibition is dose dependent.

  • PDF

Recent Trends in Photodynamic Therapy Using Upconversion Nanoparticles (업컨버전 나노입자를 이용한 광역학치료 연구 동향)

  • Im, Se Jin;Lee, Song Yeul;Park, Yong Il
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.138-146
    • /
    • 2018
  • Photodynamic therapy (PDT) is a great potential approach for the localized tumor removal with fewer metastatic potentials and side effects in treating the disease. In the treatment process, a photosensitizer (PS) that absorbs a light energy to generate reactive oxygen is essential. In general, a visible light is used as a light source of PDT, so that side effects from the light source are inevitable. For this reason, upconversion nanoparticles (UCNPs) using near-infrared (NIR) as an excitation source are attracting attention in the field of disease diagnosis and treatment. UCNPs have the low cytotoxicity and phototoxicity, and also advantages such as deep tissue penetration and low background autofluorescence. For PDT, UCNPs should be combined with a PS which absorbs the light energy from UCNPs and transfers it to the surrounding oxygen to produce reactive oxygen. In addition, the therapeutic efficacy can be improved by modifying nanoparticle surfaces, adding anti-cancer drugs, or combining with photothermal therapy (PTT). In this review, we summarize the recent research to improve the efficiency of PDT using UCNPs.

The Studies on Molecular Geometries and Electronic Structures of Substituted meso-Catecholic Porphyrins: DFT Methods and NSD

  • Park, Seung-Hyun;Kim, Su-Jin;Kim, Jin-Dong;Park, Sung-Bae;Huh, Do-Sung;Shim, Yong-Key;Choe, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1141-1148
    • /
    • 2008
  • Geometry optimizations and electronic structure calculations are reported for meso-tetraphenyl porphyrin (TPP) and a series of meso-substituted catecholic porphyrins (KP99150, KP99151, KP99152, KP99153, and KP99090) using density functional theory (DFT). The calculated B3LYP//RHF bond lengths are slightly longer than those of LSDA//RHF. The calculated electronic structures clearly show that TPP and meso-catecholic group contribute to π-electron conjugation along porphyrin ring for HOMO and LUMO, significantly reduced the HOMO-LUMO gap. The wavelength due to B3LYP energy gaps is favored with experimental value in Soret (B), and LSDA energy gaps are favored with experimental value in visible bands (Q). The electronic effect of the catecholic groups is to reduced energies of both the HOMOs and LUMOs. However, the distortion of porphyrin predominantly raises the energies of the HOMOs, so the net result is a large drop in HOMO and smaller drop in LUMO energies upon meso-substituted catecholic group of the porphyrin macrocycle as shown in KP99151 and KP99152 of Figure 5(a). These results are in reasonable agreement with normal-coordinate structural decomposition (NSD) results. The HOMO-LUMO gap is an important factor to consider in the development of photodynamic therapy (PDT).

GafChromic RTQA Film Dosimetry for Laser Beam with Photodynamic Therapy (GafChromic RTQA Film을 이용한 광역학적 치료용 레이저의 선질 측정)

  • Lee, Byung Koo;Lim, Hyun Soo;Kenar, Necla
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.73-79
    • /
    • 2013
  • Purpose: The purposes of this study were to measure the dose distribution of Photodynamic therapy(PDT) laser with 635 nm wavelength using GafChromic film. Method & Result: We made each output 300 J by changing mW and sec using the laser beam radiation mode such as C.W(Continuous Wave) mode, Pulse mode and Burst Pulse mode and measured the does at 0 mm and 5 mm of distance from optic fiber catheter end to the film, and at 5 mm distance by changing the angle of the end of the optic fiber catheter as $0^{\circ}$ and $0.5^{\circ}$. The radiated film was scanned and OD(Optical Density) was compared. And two-dimensional isodose curves were obtained and the consistency of shapes was compared. It was confirmed that there was consistency between optic density and the dose radiated on the film when we radiated GafChromic film by changing distance and angle of 300 J output in each radiation mode coordinating mW and sec. Conclusion: In this study, we could identify the stability according to changes in laser beam modes, changes in output according to distance, changes in uniformity according to angle, and beam profiles using GafChromic film, and we could also get two-dimensional isodose curve. It was found that small change in the distance and angle that is made when optic fiber catheter was contacted on the treatment area did not make big effects on the output of beam and the uniformity of dose, and it was also found that GafChromic film could be utilized for the purpose of QA of PDT laser beam.

Molecular Geometries and Electronic Structures of Methyl Pyropheophorbide-a and (Cationic) Tropolonyl Methyl Pyropheophorbides: DFT Calculation

  • Kim, Na-Ri;Kim, Su-Jin;Kim, Jin-Dong;Huh, Do-Sung;Shim, Young-Key;Choe, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.205-213
    • /
    • 2009
  • This study reports on the geometry optimizations and electronic structure calculations for methyl pyropheophorbide (MPPa), tropolonyl methyl pyropheophorbides (TMPPa, ITMPPa), and cationic tropolonyl methyl pyropheophorbides ($TMPPa^+{{\cdot}BF_4}^-,\;ITMPPa^+{{\cdot}BF_4}^-,\;TMPPa^+,\;and\;ITMPPa^+$) using Local Spin Density Approximation (LSDA/ 6-31G*) and the Restricted Hatree-Fock (RHF/6-31G*) level theory. From the calculated results, we found that substituted cationic tropolonyl groups have larger structural effects than those of substituted neutral tropolonyl groups. The order of structural change effects is $ITMPPa^+ > ITMPPa^+{{\cdot}BF_4}^-$ > ITMPPa, as a result of the isopropyl group. Because it is an electron-releasing group, the substituted isopropyl group electronic effect on a 3-position tropolone increases the Highest Occupied Molecular Orbital and Lowest Unoccupied Molecular Orbital (HOMO-LUMO) energy gap. It was constituted that the larger the cationic characters of these photosensitizers, the smaller the HOMOLUMO band gaps are. The orbital energies of the cationic systems and the ions are stronger than those of a neutral system because of a strong electrostatic interaction. However, this stabilization of orbital energies are counteracted by the distortion of chlorin macrocycle, which results in a large destabilization of chlorin-based compound HOMOs and smaller destabilization of LUMOs as shown in TMPPa (ITMPPa), $TMPPa^+{{\cdot}BF_4}^- (ITMPPa^+{{\cdot}BF_4}^-),\;and\;TMPPa^+\;(ITMPPa^+)$ of Figure 6 and Table 6-7. These results are in reasonable agreement with normal-coordinate structural decomposition (NSD) results. The HOMO-LUMO gap is an important factor to consider in the development of photodynamic therapy (PDT).

A Study on the Measurements of Optical Parameters in Photosensitizer by Light Scattering (농도가 진한 매질에서 광증감제에 의한 광학적 파라미터측정에 관한 연구)

  • Kim, Ki-Jun;Lee, Jou-Joub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2011
  • The study of wave propagation and scattering in biological media has become increasingly important in recent years. The propagation of light within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is measured. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements. The result was compromised with transport of intensities though a random distribution of scatters.

A Study on the Optical Influence by Photosensitizer in Vitro (In Vitro에서 광증감제에 의한 광학적 영향에 관한 연구)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.182-190
    • /
    • 2005
  • The propagation of light radiation within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is important. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I\;/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements.