• Title/Summary/Keyword: photodissociation

Search Result 80, Processing Time 0.026 seconds

Photodissociation of Nitrous Oxide by Slice Ion Imaging: The Stagnation Pressure Dependence

  • Cheong, Nu-Ri;Park, Hye-Sun;Nam, Sang-Hwan;Shin, Seung-Keun;Cho, Soo-Gyeong;Lee, Hai-Whang;Song, Jae-Kyu;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2661-2664
    • /
    • 2009
  • Photodissociation of nitrous oxide near 203 nm has been studied by a combination of high resolution slice ion imaging technique and (2+1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy of $N_2(X^1{{\Sigma}_g}^+)$ via the (a″$^1{{\Sigma}_g}^+$) state. We have measured the recoil velocity and angular distributions of $N_2$ fragments by ion images of the state-resolved photofragments. The $N_2$ fragments were highly rotationally excited and the NN-O bond dissociation energy was determined to be 3.635 eV. Also, we investigated the photofragment images from the photodissociation of $N_2O$ clusters with various stagnation pressures.

Photodissociation to Several Atomic Terms: Near-threshold Resonance for Production of O($^3$P) and O($^1$D) in OH Photodissociation

  • Lee, Seong Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1333-1336
    • /
    • 2001
  • A theoretical analysis is presented for the multichannel type resonance at energies above the dissociation threshold to O(1D) in the photodissociation of OH. Dissociations to both oxygenic terms O(3P) and O(1D) are treated. Total cross sections for producing these oxygen terms display asymmetric resonance due to the quantum interference resulting from complicated interplay of electronic states correlating to these two oxygenic terms. The branching ratios of O(3Pj, j = 0, 1, 2), and the vector properties of O(3Pj, j =0,1,2) and O(1D) display extensive changes near the threshold resonance as the result of the interactions among the electronic states correlated with O(3P) and O(1D).

Analysis of Binodal Structures of Final State Distributions in Vibrational Predissociations of Triatomic van der Waals Molecules

  • 이천우
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1193-1203
    • /
    • 1995
  • In this work, we focused on the setup of the tools for the analysis of the final rotational state distribution of photofragments in vibrational predissociations of triatomic van der Waals molecules A-B2. We found that reflection principle used for the direct photodissociation processes can also be applied to find out the final rotational state distributions for indirect photodissociation processes. The quantity which represents the strength of rovibrational coupling between the quasi-bound state and the final state is reflected into the mirror of the classical angular momentum function, instead of the initial state before light absorption used in the reflection principle of direct processes. The sign change in the first derivative of the interaction potential with respect to the bond distance of B2 is found to be the source of the binodal structures in the final rotational distributions of photofragments in the model system studied in this work. In MQDT analysis, short range eigenchannel basis functions were found to be localized in angle, in the previous work [Lee, C.W. Bull. Korean Chem. Soc. 1995, 16, 957.] and may be called angle functions. Angle functions enjoy simple geometrical structures which have simple functional relations with the final state distributions of photofragments. Two processes take place along the angle functions which resemble the quasi-bound state and dominate over other processes. Two such angle functions are found to be not only localized angularly but also localized either one of ends of B2 in motions along the bond of B2. These dominating photodissociation processes, however, cancel each other. This cancellation causes photodissociation to depend sensitively on the interaction potential at other angles than the dominant one. Part of potential surface where much larger torque exists can now play an important role in photodissociation. MQDT also enables us to see which processes play important roles after cancellation. This is done by examining the amounts of time delayed by asymptotic eigenchannels.

N(2D) Product Velocity Mapped Imaging in the VUV Photolysis of Nitrous Oxide at 118.2 nm

  • Cosofret, Bogdan R.;Lambert, H. Mark;Houston, Paul L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.179-183
    • /
    • 2002
  • Resonance-enhanced multiphoton ionization with time-of-flight product imaging of the $N(^2D)$ atoms has been used to study the $N_2O$ photodissociation at 118.2 nm and the two-photon dissociation at 268.9 nm. These imaging experiments allowed the determination of the total kinetic energy distribution of the $NO(X^2{\prod})$ and $N(^2D_{5/2})$ products. The $NO(X^2{\prod})$ fragments resulting from the photodissociation processes are produced in highly vibrationally excited states. The two-photon photodissociation process yields a broad $NO(X^2{\prod})$ vibrational energy distribution, while the 118.2 nm dissociation appears to produce a vibrational distribution sharply peaked at $NO(X^2{\prod},\;{\nu}=14)$.

Photodissociation Dynamics of Cyanamide at 212 nm

  • Kwon, Chan-Ho;Lee, Ji-Hye;Kim, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1485-1488
    • /
    • 2007
  • Photodissociation dynamics of cyanamide (NH2CN) at 212 nm has been investigated by measuring rotationally resolved laser induced fluorescence spectra of CN fragments exclusively produced in the ground electronic state. From the spectra, rotational population distributions of CN as well as translational energy releases in the products were obtained. The measured average rotational energies of CN were 12.4 ± 0.5 and 11.6 ± 0.5 kJ/ mol for v'' = 0 and v'' = 1, respectively and the center of mass average translational energy release among products was 41.8 ± 6.4 kJ/mol. The observed energy partitioning was well represented by statistical prior calculations, from which it was suggested that the dissociation takes place on the ground electronic surface after rapid internal conversion.

Photodissociation Dynamics of tert-Butyl Isocyanide at 193 nm

  • Kang, Tae-Yeon;Shin, Seung-Keun;Kim, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1130-1132
    • /
    • 2004
  • Photodissociation dynamics of tert-butyl isocyanide at 193 nm has been investigated by measuring rotationally resolved laser induced fluorescence spectra of CN fragments that were exclusively produced in the ground electronic state. From the spectra, internal energies of CN and translational energy releases in the products were obtained. The dissociation takes place in the excited triplet states which are strongly repulsive along the dissociation coordinate via curve crossing from the initially prepared state.

Photodissociation Dynamics of Formic Acid at 206 nm

  • Kang, Tae-Yeon;Kim, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1997-2001
    • /
    • 2006
  • The photodissociation dynamics of formic acid (HCOOH) at 206 nm have been investigated from rotationally resolved laser induced fluorescence spectra of OH ($^2\Pi$) fragments produced exclusively in the ground state. From the spectra, the rotational energy of the fragments was measured to be $820\;{\pm}\;50\;cm^{-1}$. The translational energy released in the products, which is 87% of the total available energy of the system, was also measured from analyses of the Doppler profiles. Joining these data with quantum chemical molecular orbital calculations, we have concluded that the dissociation should take place along the S1 surface with an exit channel barrier and also that the energy partitioning is determined at the exit channel.

Potential Energy Surface from Spectroscopic Data in the Photodissociation of Polyatomic Molecules

  • Kim, Hwa Jung;Kim, Yeong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.455-462
    • /
    • 2001
  • The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-independent inversion method and discussed several extensions of the algorithm.