• Title/Summary/Keyword: photodecomposition

Search Result 53, Processing Time 0.026 seconds

Enhanced 2-Chorophenol Photodecomposition using Nano-Sized Mn-incorporated TiO2 Powders Prepared by a Solvothermal Method

  • Kim, Dongjin;Im, Younghwan;Jeong, Kyung Mi;Park, Sun-Min;Um, Myeong-Heon;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2295-2298
    • /
    • 2014
  • To effectively destruct 2-chlorophenol, a representative sterile preservative, nanometer-sized Mn (0.5, 1.0, 3.0 mol %)-incorporated $TiO_2$ powders were synthesized by a solvothermal method. XRD result demonstrated that the Mn ingredients were perfectly inserted into $TiO_2$ framework. The Mn-$TiO_2$ particles exhibited an anatase structure with a particle size of below 20 nm. The absorbance was shifted to the higher wavelength on Mn-$TiO_2$ compared to that of $TiO_2$. Otherwise, the PL intensities which has a close relationship for recombination between holes and electrons significantly decreased on Mn-$TiO_2$. The photodecomposition for 2-chlorophenol in a liquid system was enhanced over Mn-doped $TiO_2$ compared with pure $TiO_2$: 2-chlorophenol of 50 ppm was completely decomposed after 12 h when 1.0 mol % Mn-$TiO_2$ was used. Consequently, the core of this paper is as follows. introducing Mn into $TiO_2$ framework reduced the band-gap, moreover, it played as an electron capture resulted to lower recombination between electrons and holes during photocatalytic reaction for removal of 2-cholophenol.

Properties of Zeolite Nanopowder Coated with Titanium Dioxide by Atomic Layer Deposition

  • Lee, Bo Kyung;Ok, Hae Ryul;Bae, Hye Jin;Kim, Hyug Jong;Choi, Byung Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.149-153
    • /
    • 2016
  • Nanosized zeolites were prepared in an autoclave using tetraethoxysilane (TEOS), tetrapropylammonium hydroxide (TPAOH), and $H_2O$, at various hydrothermal synthesis temperatures. Using transmission electron microscopy and particle size analysis, the nanopowder particulate sizes were revealed to be 10-300 nm. X-ray diffraction analysis confirmed that the synthesized nanopowder was silicalite-1 zeolite. Using atomic layer deposition, the fabricated zeolite nanopowder particles were coated with nanoscale $TiO_2$ films. The $TiO_2$ films were prepared at $300^{\circ}C$ by using $Ti[N(CH_3)_2]_4$ and $H_2O$ as precursor and reactant gas, respectively. In the TEM analysis, the growth rate was ${\sim}0.7{\AA}/cycle$. Zeta potential and sedimentation test results indicated that, owing to the electrostatic repulsion between $TiO_2$-coated layers on the surface of the zeolite nanoparticles, the dispersibility of the coated nanoparticles was higher than that of the uncoated nanoparticles. In addition, the effect of the coated nanoparticles on the photodecomposition was studied for the irradiation time of 240 min; the concentration of methylene blue was found to decrease to 48%.

Formation of Reactive Species Enhanced by H2O2 Addition in the Photodecomposition of N-Nitrosodimethylamine (NDMA)

  • Kwon, Bum Gun;Kim, Jong-Oh;Kwon, Joong-Keun
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • This study noted that the actual mechanism of N-nitrosodimethylamine (NDMA) photodecomposition in the presence of $H_2O_2$ is missing from the previous works. This study investigated a key unknown reactive species (URS) enhanced by the addition of $H_2O_2$ during the photolysis of NDMA with $H_2O_2$, not hydroxyl radicals. In order to provide experimental evidences in support of URS formation, we have mainly used p-nitrosodimethylaniline, methanol, and benzoic acid as well-known probes of ${\cdot}OH$ in this study. Both loss of PNDA and formation of hydroxybenzoic acids were dependent on NDMA concentrations during the photolysis in a constant concentration of $H_2O_2$. In particular, competition kinetics showed that the relative reactivity of an URS was at least identical with ${\cdot}OH$-like reactivity. In addition, the decay of NDMA was estimated to be about 65% by the direct UV light and about 35% by the reactive species or URS generated through the photolysis of NDMA and $H_2O_2$. Therefore, our data suggest that a highly oxidizing URS is formed in the photolysis of NDMA with $H_2O_2$, which could be peroxynitrite ($ONOO^-$) as a potent oxidant by itself as well as a source of ${\cdot}OH$.

Photodecomposition of Tar Colorant With Zinc Oxide Suspension (산화아연 현탁액에 의한 타르색소의 광분해)

  • Jeong, Kap-Seop
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1155-1161
    • /
    • 2006
  • The characteristics of photocatalytic degradation of tar colorants such as brilliant blue FCF(BBF) and tartrazine(TTZ) with zinc oxide suspension was studied in a batch reactor under irradiation of ultra-violet ray. Photocatalytic degradation of TTZ with ZnO was more higher than that of BBF, and was Increased with dosage of ZnO below 5g, but was nearly affected with initial pH of two tar colorants aqueous solution. Ammonium persulfate was more effective oxidant than potassium bromate which slightly increased the degradation of BBF, but not increased the degradation of TTZ. The photocatalytic degradation rates of BBF and TTZ were pseudo-first order with rate constants of 0.0066, 0.0092 and $0.015min^{-1}$ for BBF, 0.042, 0.017 and $0.110min^{-1}$ for TTZ at the dosage of 1, 2 and 5g ZnO, respectively.

Photocatalytic effects of heteropolytungstic acid - encapsulated TiSBA-15 on decomposition of phenol in water

  • Sambandam Anandan;Yoon, Min-Joong;Park, Sang-Eon
    • Journal of Photoscience
    • /
    • v.10 no.3
    • /
    • pp.231-236
    • /
    • 2003
  • TiO$_2$ has been used as photocatalyst since two and half decades ago. The efficiency in its photocatalytic reactions has been improved by increasing the surface area of the photocatalyst by supporting fine TiO$_2$ particles on some porous materials. In this work, heteropolytungstic acid (HPA) - encapsulated into the titanium exchanged SBA-15 mesoporous materials (TiSBA-15) were prepared and characterized. Also their photocatalytic effects on decomposition of phenol were investigated and the photodecomposition rates of the phenol were observed to be increased by 2.5 8 fold, as compared to those observed in the presence of HPA-encapsulated SBA-15 or TiSBA-15 without HPA.

  • PDF

Evaluation on the effects of pesticide residues to agroecosystem in Korea (농업 생태계에 대한 잔류농약의 영향 평가)

  • Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.80-93
    • /
    • 1997
  • Pesticide residues in soil could be affected to the growth of micro organisms and the activity of enzymes directly, and successively to the soil properties as pH, Eh and nitrogen metabolism. However, residues are diminished by degradation of soil microorganisms, run-off, leaching, volatilization, photodecomposition and uptake through crops. In this paper research results published in Korea were summarized about translocation of soil residues into crops, fates of residues in soil, effects to the activity of soil microorganisms and metabolic pathways of some pesticides. Generally speaking, pesticide residues in soil were not much affected to the agro-ecosystem except few chemicals. So it should be needed more further researches in this field, continuously.

  • PDF

A Study on the Photoreaction between Organic Halides and Amines (有機 Halides 와 Amines 間의 光反應에 關한 硏究)

  • Kim, You-Sun;Park, Yong-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.148-154
    • /
    • 1962
  • The reactions between organic halides$(CCl_4,\;C_6H_5Br,\;C_6H_5Cl,\;C_6H_5I)$ and amines $(C_6H_5NH_2,\;R_2NH,\;R_3N,\;(CH_2)_5NH,\;pyridine)$ were studied under mixed u.v. irradiation. The modes of reactions were examined by means of gas chromatography and product-reactant ratio determination. The reaction of $CCl_4$ with amines give chloroform and hexachloroethanes, and the reaction of aromatic halides with amines gave biphenyl and benzene. In each series of reaction there obtained mainly corresponding amine hydrohalides, but no amination products. The reactivity was in the order of the basicity of amines and of the reactivity of organic hahides, except in the case of cyclic tertiary amine. The result was interpreted as a non-chain photodecomposition process. A competitive proton abstraction reaction path via the formation of a change transfer complex was proposed as the reaction mechanism.

  • PDF

Induced Eye-detectable Blue Emission of Triazolyl Derivatives via Selective Photodecomposition of Chloroform under UV Irradiation at 365 nm

  • Lee, Byoung-Kwan;Yoon, Jun Hee;Yoon, Sangwoon;Cho, Byoung-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.135-140
    • /
    • 2014
  • A bent-shape triazolyl derivative was synthesized via click chemistry, and its photophysical property was investigated in various solvents. In contrast to the invisible ultraviolet emission of other solutions, the chloroform solution exhibited a blue light emission at 460 nm. Furthermore, the blue fluorescence intensified as the UV exposure time at 365 nm increased. On the basis of $^1H$-NMR, pH paper, and acid-addition studies, we confirmed that chloroform was decomposed into HCl with the aid of the triazolyl derivative. The density functional theory calculations suggested that the eye-detectable blue fluorescence was attributed to an intramolecular charge transfer process of the protonated triazolyl derivative in the chloroform solution.

Removal and Photodecomposition of Haloacetonitriles of Disinfection byproducts (소독부산물인 Haloacetonitriles의 광분해 및 제거)

  • Kim, Jong-Hyang;Lee, Myung-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.224-227
    • /
    • 2005
  • 먹는물에서 염소소독 부산물로서 휘발성유기화합물인 디클로로아세트니트닐(DCAN), 트리클로로아세트니트릴(TCAN), 디브로모아세트니트릴(DBAN), 브로모클로로아세트니트릴(BCAN)의 4종류의 물질을 대상으로 탈기법(air stripping) 및 탈기법(air stripping)과 자외선에너지($8\;W{\times}6$)를 이용하여 분해시험을 행하였다. 물질들의 확인은 가스크로마토 그래프, 이온크로마토그래프 그리고 자외선분광광도계를 사용하였다. TCAN은 탈기법 이용한 방법에서 제거가 되었으며, DBAN과 BCAN에서는 자외선에너지에 의해 분해가 되었다.

Photodecomposition of N-t-Butyl-N-chloro-$\omega$-phenylalkanesulfonamides in the Presence of Oxygen

  • Lee, Jong Hun;Kim Kyongtae
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.676-680
    • /
    • 1992
  • Irradiation of N-t-butyl-N-chloro-3-phenylpropanesulfonamide (1a) in benzene at $20^{\circ}C$ using 450 W high pressure mercury arc lamp in the presence of oxygen affored N-t-butyl-3-phenylpropanesulfonamide (2), N-t-butyl-3-chloro-3-phenylpropanesulfonamide (3), and N-t-butyl-3-oxo-3-phenylpropanesulfonamide (4). Similarly, N-t-butyl-4- (5), N-t-butyl-4-chloro-4- (6), and N-t-butyl-4-phenylbutanesulfonamides (7) were obtained from N-t-butyl-N-chloro-4-phenylbutanesulfonamide (1b). However, irradiation of N-t-butyl-N-chloro-5-phenylpentanesulfonamide (1c) under the same conditions gave complex mixtures. These results indicate that sulfonamidyl radical generated from each of 1a and 1b can abstract intramolecularly a hydrogen atom from the benzylic position only by forming six and seven-membered transition states, respectively.