• Title/Summary/Keyword: photocatalytic

Search Result 1,096, Processing Time 0.018 seconds

Analysis of Characteristics and Optimization of Photo-degradation condition of Reactive Orange 16 Using a Box-Behnken Method (실험계획법 중 Box-Behnken(박스-벤켄)법을 이용한 반응성 염료의 광촉매 산화조건 특성 해석 및 최적화)

  • Cho, Il-Hyoung;Lee, Nae-Hyun;Chang, Soon-Woong;An, Sang-Woo;Yonn, Young-Han;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.917-925
    • /
    • 2006
  • The aim of our research was to apply experimental design methodology in the optimization of photocatalytic degradation of azo dye(Reactive orange 16). The reactions were mathematically described as a function of parameters amount of $TiO_2(x_1)$, and dye concentration($x_2$) being modeled by the use of the Box-Behnken method. The results show that the responses of color removal(%)($Y_1$) in photocatalysis of dyes were significantly affected by the synergistic effect of linear term of $TiO_2(x_1)$ and dye concentration($x_2$). Significant factors and synergistic effects for the $COD_{Cr}$, removal(%)($Y_2$) were the linear term of $TiO_2(x_1)$ and dye concentration($x_2$). However, the quadratic term of $TiO_2(x_1^2)$ and dye concentration($x_2^2$) had an antagonistic effect on $Y_1$ and $Y_2$ responses. Canonical analysis indicates that the stationary point was a saddle point for $Y_1$ and $Y_2$, respectively. The estimated ridge of maximum responses and optimal conditions for $Y_1:(X_1,\;X_2)$=(1.11 g/L, 51.2 mg/L) and $Y_2:(X_1,\;X_2)$=(1.42 g/L, 72.83 mg/L) using canonical analysis was 93% and 73%, respectively.

Characteristics of Titanium Dioxide-Impregnated Fibrous Activated Carbon and Its Application for Odorous Pollutant (이산화티타늄 담지 섬유형 활성탄소의 특성 및 악취오염물질 제어를 위한 응용)

  • Jo, Wan-Kuen;Hwang, Eun-Song;Yang, Sung-Bong
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • The application of fibrous activated carbon (FAC)-titanium dioxide ($TiO_2$) hybrid system has not been reported yet for the control of malodorous dimethyl sulfide (DMS) at residential environmental levels. Accordingly, the current study was designed not only to characterize this hybrid system using x-ray diffraction method, particulate surface measurement and Fourier transform Infrared (FTIR) method, but also to evaluate its adsorptional photocatalytic activity (APA) for the DMS removal. The physical/surface characteristics of FAC-$TiO_2$ which was prepared in this study suggested that the hybrid material might have certain APA for DMS. The Brunauer-Emmett-Teller (BET) specific area, total pore volume, micropore volume and mesopore volume decreased all as the $TiO_2$ amounts coated on FAC increased, whereas the reverse was true for average pore diameter. $TiO_2$ coated onto FAC did not influence the adsorptional activity of FAC for the DMS input concentration of 0.5 ppm. The APA test of the hybrid material presented that the initial removal efficiencies of DMS were 93, 78, 71 and 57% for the flow rates of 0.5, 1.0, l.5 and 2.0 L/min, respectively, and they decreased somewhat 2 h after the experiment started and kept almost constant for the rest experimental period. Under this pseudo-equilibrium condition, the DMS removal efficiencies were 78, 58, 53 and 36% for the four flow rates, respectively. Meanwhile, there were no significant byproducts observed on the surfaces of the hybrid material. Consequently, this study suggests that, under the experimental conditions used in the present study, the hybrid material can be applied for DMS at residential environment levels without being interfered by any byproducts.

Treatment of Cu(II)-EDTA using Solar/$TiO_2$ Photocatalysis (태양광/$TiO_2$ 광산화를 이용한 Cu(II)-EDTA의 제거)

  • Shin, In-Soo;Lee, Seung-Mok;Yang, Jae-Kyu;Shin, Won-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Photocatalytic oxidation of Cu(II)-EDTA has been studied using solar/$TiO_2$ photocatalysis as an energy source. Photocatalysis efficiency on the treatment of Cu(II)-EDTA was investigated using different types of solar collectors as well as by variation of the angles of solar collector solar light intensities, flow rates, and areas of solar collector. effect of $H_2O_2$ and types of $TiO_2$ catalyst on the treatment of Cu(II)-EDTA was also investigated. Removal of Cu(II) and DOC was favorable with a hemispherical collector than with a flat collector Removal of Cu(II) and DOC increased with increasing angles of solar collector up to $38^{\circ}$. Slurry type $TiO_2$ showed four-times higher removal efficiency than immobilized type $TiO_2$. Removal of both Cu(II) and DOC at a clear sky of solar light intensity ranging from 0.372 to $2.265\;mW/cm^2$ was greater than removal at a cloudy day of solar light intensity ranging from 0.038 to $1.129\;mW/cm^2$. From the result of this research that the removal efficiency of Cu(II) and DOC increased as the solar light intensity increased, it can be inferred that quantum yield in the destruction of Cu(II)-EDTA may directly related with the solar light intensity. Removal of Cu(II) increased as increasing the area of solar collector and was similar at lower flow rates white removal of Cu(II) was interfered at higher flow rates. When immobilized $TiO_2$ was used, removal efficiency of Cu(II) increased in the presence of $H_2O_2$ while negligible effect was found in the use of $TiO_2$ slurry.

The Photocatalytic Degradation of Humic Acid by TiO2 Sol-Gel Coating -Characterization of Humic Acid in the Chemical Oxidation Treatment (II)- (TiO2 졸-겔 코팅 막에 의한 Humic Acid의 광분해 -화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구 (II)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.765-773
    • /
    • 2000
  • The degradation of humic acid using $TiO_2$ coatings was studied, $TiO_2$ coatings were prepared by dip-coating method. Sol solutions for coating were prepared by mixing the gel, which can be produced by the reaction of $TiOCl_2$ and $NH_4OH$ solution, and hydrogen peroxide solution, and hydrolysis of titanium tetraisopropoxide (TTIP). It was shown from XRD that coatings from sol aged at $100^{\circ}C$ for 18h with titanium peroxo solution were crystallized to anatase in the range of temperatures of $25^{\circ}C$ to $500^{\circ}C$. In contrast, those coated from TTIP were crystallized to anatase at temperature above $400^{\circ}C$. So the sols originated from $TiCl_4$ can be applied for not only on the heat-resistance substrates but on the plastic substrates. Thickness and the quality of the films were dependent on the withdrawing speed, the concentration of sol, and the number of coating. The films showed various interference colors depending on the thickness of them. In the case that the films coated 2 times at withdrawing speed of 2.5cm per minute by 0.2M sol, the films had a transparent light blue color with thickness of around 50nm. It was known from the result of photo-degradation by $TiO_2$ coatings using humic acid that the removal efficiency of $COD_{cr}$ was over 85% after illumination of $UV/H_2O_2$ for 40min. and that of UV/VIS absorbable materials was over 95%.

  • PDF

Sensitivity of NOx Removal on Recycled TiO2 in Cement Mortar (재생 이산화티탄을 혼입한 모르타르의 NOx 저감률 민감도 분석)

  • Rhee, Inkyu;Kim, Jin-Hee;Kim, Jong-Ho;Roh, Young-Sook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.388-395
    • /
    • 2016
  • This paper explores the photocatalytic sensitivity of cement mortar incorporated with recycled $TiO_2$ from waste water sludge. Basically, $TiO_2$ cluster sank down slowly to the bottom of cement mortar specimen before setting and hardening process. This leads the mismatch of $TiO_2$ concentration on the top and the bottom faces of a specimen. This poorly dispersed $TiO_2$-cement mortar naturally exhibits poor NOx removal efficiency especially on the top of cementitious structure. In architectural engineering application such as building or housing structures, one can simply filp over from the bottom so that more $TiO_2$ concentrated surface can be placed outward into the air. However, in highway pavement case, this could not be applicable due to in-situ installation of concrete pavement. Hence, the dispersion of $TiO_2$ cluster inside the cementitous material is getting important issue onto road construction application. To elaborate this issue, according to our results, silica fume, high-ranged water reducer, viscosity agent, blast furnace slag were not enhanced much of dispersion characteristics of $TiO_2$ cluster. The combination of foaming agent and accelerator of hardening with viscosity agent and small grain size of fine aggregate may help the dispersion of $TiO_2$ inside cementitious materials. Even though the enhanced dispersion were applied to the specimen, NOx removal efficiency doest not change much for the top surface of the specimen. This concurrently affected by the presence of tiny air voids and the dispersion of $TiO_2$ in that these voids could easily adsorbed NOx gas with the aid of large surface area.

The control of TiO2 nanofiber diameters using fabrication variables in electrospinning method (전기 방사 공정의 제조 변수를 이용한 TiO2 나노섬유의 직경 제어)

  • Yoon, Han-Sol;Kim, Bo-Sung;Kim, Wan-Tae;Na, Kyeong-Han;Lee, Jung-Woo;Yang, Wan-Hee;Park, Dong-Cheol;Choi, Won-Youl
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • TiO2 has been used in various fields such as solar cells, dental implants, and photocatalysis, because it has high physical and chemical stability and is harmless to the body. TiO2 nanofibers which have a large specific surface area also show a good reactivity in bio-friendly products and excellent photocatalysis in air and water purification. To fabricate TiO2 nanofibers, an electrospinning method was used. To observe the diameter of TiO2 nanofibers with fabrication variables, the fabrication variables was divided into precursor composition variables and process variables and microstructure was analyzed. The concentrations of PVP (Polyvinylpyrrolidone) and TTIP (Titanium(IV) isopropoxide) were selected as precursor composition variables, and inflow velocity and voltage were also selected as process variables. Microstructure and crystal structure of TiO2 nanofibers were analyzed using FE-SEM (Field emission scanning electron microscope) and XRD (X-ray diffraction), respectively. As-spun TiO2 nanofibers with an average diameter of about 0.27 ㎛ to 1.31 ㎛ were transformed to anatase TiO2 nanofibers with an average diameter of about 0.22 ㎛ to 0.78 ㎛ after heat treatment of 3 hours at 450℃. Anatase TiO2 nanofibers with an average diameter of 0.22 ㎛ can be expected to improve the photocatalytic properties by increasing the specific surface area. To change the average diameter of TiO2 nanofibers, the control of precursor composition variables such as concentrations of PVP and TTIP is more efficient than the control of electrospinning process variables such as inflow velocity and voltage.