• Title/Summary/Keyword: photobacteria

Search Result 3, Processing Time 0.01 seconds

Stabilization of Bioluminescence of Immobilized Photobacterium phosphoreum and Monitoring of Environmental Pollutants

  • Britz, Margaret L.;Nina Simonov;Chun, Uck-Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.242-249
    • /
    • 1997
  • Stability of bioluminescence was investigated with Photobacterium phosphoreum immobilized on the strontium alginate in order to develope continuous real time monitoring of pollutants. The stability of bioluminescence emission was improved by prolonged aging time. The aging time of ${\geq}40$ min and the cell concentration of ${\leq}0.6\;of\;OD_660$ were selected for the immobilization of P. phosphoreum to give linearity between cell concentrations and bioluminescence intensity. In sensitivity tests using phenol, it was found that this compound quenched bioluminescence proportional to the concentration without lowering of cell growth. The lower value for maximum quenching ($q_s$) and higher dissociation constant ($K_s$) were observed with strontium-alginate immobilized cells compared to free cells. The response of bioluminescence to toxicants was evaluated with the immobilized luminescent bacteria. The sensitivity of the immobilized cells was found to be good in response to toxicants, 4-nitrophenol, salicylate and cadmium, when evaluated with a specific rate of bioluminescence quenching.

  • PDF

Immobilized Luminescent Cell - based Flow Through Monitoring of Environmental Pollutants

  • Britz, Margaret L.;Simonov, Nina;Chun, Uck-Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.250-257
    • /
    • 1997
  • A new sensing system based on the immobilization of luminescent bacteria, photobacterium phosphoreum, was proposed for continuous real-time monitoring of pollutants. The response curves demonstrate that Photobacterium phosphoreum immobilized on the strontium alginate were very sensitive to seven reference chemicals used. The significant inhibitory concentrations for bioluminescence emission were 5 ppm for Pb$(NO_3)_2$), $NiCl_2$, $CdCl_2$, 50 ppm for $NaASO_2$, 0.1 ppm for $HgCl_2$, 0.5 ppm for pentachlorophenol and less than 5 ppm for SDS, respectively. The alginate mixed-cells (AMC) retained their luminescence during experimental period (29 days) under storage condition of $-80^{\circ}C$. The variables affecting performance of continuous flow through monitoring (CFTM) was optimized in order to ensure stability and efficiency. The flow through cell with strontium-alginate immobilized luminescent bacteria was tested with salicylate and 4-nitrophenol. A rapid response of luminescence was recorded by time drive mode in bioluminescence spectrometer after exposure to both toxicants.

  • PDF

Phylogenetic Diversity and Antibacterial Activity in Bacterium from Balloon Fish (Diodon holocanthus) of Jeju Island (제주 연안의 가시복(Diodon holoanthus)에서 분리된 세균의 다양성 및 항균활성 효과)

  • Moon, Chae-Yun;Ko, Jun-Cheol;Kim, Min-Seon;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.57-63
    • /
    • 2020
  • Over the past 20 years, global warming has transformed the marine ecosystem of the Jeju Island into a subtropical zone making it conducive to the production of tropical fishes. Recently, the balloon fish (Diodon holoanthus) has been found off the coast of the Jeju Island. In this study, we analyzed the diversity of its intestinal microorganisms as a representative for the surrounding environment. In addition, the isolates were evaluated for their antibacterial activity. A total of 161 strains of various species were identified and isolated using 16S ribosomal RNA gene sequence analysis. They were separated into three groups, of which Phylum Proteobacteria was found to be the most dominant with 91% sequence similarity. This includes the class γ-proteobacteria that is made up of twelve genera and twenty-four hundred species. The second group comprised strains of the genus Vibrio, made up of 35% Photobacteria, 32% Shewanella, and 6% Psychrobacter. It was also determined that 4% of the isolates were Acinetobacter, 3% were Enterovibrio, while Moraxella_g2 accounted for 1% of the total isolates. Class α-proteobactera includes five genera and five species; Brevundimonas, Allorhizobium, Pseudoceanicola and Erythrobcter, each accounting for 1% of the total isolates. The Firmicute strains belonged to six genera and ten species. 5% of the strains were Terribacillus, while Paenibacillus, Salinicoccus, Staphylococcus and Streptococcus accounted for 1% each of the total isolates. Actinobacteria accounted for the final phylum with strains belonging to three genera and ten species with Janibacter, Micrococcus and Isoptericola each accounting for 1% of the total isolates.