• Title/Summary/Keyword: photo-electrochemical system

Search Result 13, Processing Time 0.035 seconds

Review of Micro Electro-Chemical Machining (미세 전해가공 기술 동향)

  • Shin, HongShik
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.25-29
    • /
    • 2012
  • Micro machining technologies have been required to satisfy various conditions in a high-technology industry. Micro electrochemical process is one of the most precision machining methods. Micro electrochemical process has been divided into electrochemical etching through protective layer and electrochemical machining using ultrashort voltage pulses. Micro shaft can be fabricated by electrochemical etching. The various protective layers such as photo-resist, oxide layer and oxidized recast layer have been used to protect metal surface during electrochemical etching. Micro patterning on metal surface can be machined by electrochemical etching through protective layer. Micro hole, groove and structures can be easily machined by electrochemical machining using ultrashort voltage pulses. Recently, the groove with subnanometer was machined using AFM.

  • PDF

Composite Ni-TiO2 nanotube arrays electrode for photo-assisted electrolysis

  • Pozio, Alfonso;Masci, Amedeo;Pasquali, Mauro
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.45-57
    • /
    • 2015
  • This article is addressed to define a new composite electrode constituted by porous nickel and an array of highly ordered $TiO_2$ nanotubes obtained by a previous galvanostatic anodization treatment in an ethylene glycol solution. The electrochemical performances of the composite anode were evaluated in a photo-electrolyser, which showed good solar conversion efficiency with respect to the UV irradiance together with a reduction of energy consumption. Such a combination of materials makes our system simple and able to work both in dark and under solar light exposure, thus opening new perspectives for industrial-scale applications.

Electrochemical Signal Amplification by Redox Cycling in Distance-Controlled Nanogap Devices

  • Park, Dae Keun;Park, Jong Mo;Shin, Jong-Hwan;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.269-269
    • /
    • 2013
  • Redox cycling in between the two working electrodes in an electrochemical cell can lead a great signal enhancement. In this work, we report on a systematic examination of current amplification along with the decrease in the gap distance of a nanogap device which was fabricated by the combination of photo and chemical lithography [1]. The gap distance was controlled by the chemical lithographic process of surfacecatalyzed growth of metallic layer on pre-defined electrodes with wider initial gap. Enhancement of the redox current of ferri/ferrocyanide was observed upon gap distance reduction and the current is amplified about a thousand times in this redox system when the gap distance was decreased from 200 nm to 30 nm. The experimental results were discussed on the basis of the cyclic voltammetry (CV), atomic force microscopy (AFM) and scanning electron microscopy (SEM).

  • PDF

Development of Photo-diode for LOC fluorescence detector (LOC 형광검출 소자를 위한 광 다이오드의 제작 및 특성 평가)

  • Kim, Ju-Hwan;Shin, Kyeong-Sik;Kim, Yong-Kook;Kim, Sang-Sik;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.100-103
    • /
    • 2003
  • Signal detection technologies such as fluorescence, charge and electrochemical detection used in the monolithic capillary electrophoresis system to convert the biochemical reaction into the electrical signal. The fluorescence detection using photodiodes that measure fluorescence emitted from eluting molecules is widely used for the monolithic capillary electrophoresis system. In this paper, in order to fabricate a photosensor has the increased sensitivity, we investigated on the sensitivity of general type and p-i-n type diode. The p-i-n diode has higher sensitivity than photodiode. Considering these results, we fabricated p-i-n diodes on the high resistive$(4k{\Omega}{\cdot}cm)$ wafer into rectangle and finger pattern and compared internal resistance of each pattern. The internal resistance of p-i-n diode can be decreased by the application of finger pattern has parallel resistance structure from $571{\Omega}$ to $393{\Omega}$.

  • PDF

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.

A comparative study on the characteristics of the dye-sensitized solar cell with different methods of manufacturing the counter electrode (상대전극 제작 방식에 따른 염료감응형 태양전지 특성 비교 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Shin, In-Young;Kim, Jin-Kyoung;Hong, Ji-Tae;Chae, Won-Yong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1338_1339
    • /
    • 2009
  • Dye-sensitized solar cell (DSC) consists of photo electrode, counter electrode and electrolyte. Photo electrode has titanium oxide layer with dye molecule to create electrons. And counter electrode is made of one layer that has catalytic ability for redox system such as the iodide/triiodide couple. Most DSC researchers use platinum as catalyst on counter electrode because platinum has good catalytic ability and conductivity. Platinum is doped on fluorine-doped tin oxide glass with different methods such as sputtering method, electrochemical method and so on. In this paper, we deposit platinum on counter electrode glass with two methods. One is the radio frequency (RF) sputtering method and the other is the chemical method with heating treatment. Finally, we compare the photovoltaic characteristics of DSCs that are assembled using two different counter electrodes.

  • PDF

Electrochemical Properties and Fabrication of Conjugated System Conducting Oligomer Self-assembled Monolayer (공액구조 전도성 올리고머 자기조립단분자막의 제작 및 전기화학적 특성)

  • Min, Hyun Sik;Lee, Tae Yeon;Oh, Se Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.545-550
    • /
    • 2011
  • We have synthesized a high electrically conductive 4-(2-(4-(acetylthio)phenyl)ethynyl)benzoic acid (APBA) with a conjugated aromatic structure as a bio fix linker, and then fabricated APBA self-assembled monolayer (SAM) with a self-assembly technique. The structure of the prepared APBA SAM was studied and electrochemical properties of APBA SAM immobilized with a ferrocene molecule were investigated. Also, we have examined the molecular orientation and oxidation-reduction redox characteristics of the mixed SAM consisting of APBA and butanethiol (BT) with a X-ray photo electron spectroscopy (XPS) and cyclicvoltammetry, respectively. Electrochemical activity of the mixed SAM was increased with increasing the mixed time. Especially, the maximum redox current was obtained at a mixed time of 36 hrs.

Analysis of Lead Ions in a Waste Solution Using Infrared Photo-Diode Electrode

  • Ly, Suw-Young;Lee, Hyun-Kuy;Kwak, Kyu-Ju;Ko, Jun-Seok;Lee, Jeong-Jae;Cho, Jin-Hee;Kim, Ki-Hong;Kim, Min-Seok;Lee, So-Jung
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.227-233
    • /
    • 2008
  • To detect lead ions using electrochemical voltammetric analysis, Infrared Photo-Diode Electrode(IPDE) was applied via cyclic and square wave stripping voltammetry. Lead ions were deposited at 0.5 V(versus Ag/AgCl) accumulation potential. Instrumental measurements systems were made based on a simple and compact detection system. The stripping voltammetric and cyclic voltammetric optimal parameters were searched. The results yielded a cyclic range of $40{\sim}240mgl^{-1}$ Pb(II) and a square wave stripping working range of $0.5{\sim}5.00mgl^{-1}$ Pb(II). The relative standard deviation at 2 and 4 $mgl^{-1}$ Pb(II) was 0.04% and 0.02%(n=15), respectively, using the stripping voltammetric conditions. The detection limit was found to be 0.05 $mgl^{-1}$ with a 40 sec preconcentration time. Analytical interference ions were also evaluated. The proposed method was applied to determine lead ions in various samples.

The Study of Single Phase Source Stability consider for The DSC Cell's Operation Character by Controlled Feed-back Circuit

  • Lee, Hee-Chang
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.170-173
    • /
    • 2006
  • Recently, with increasing efficiency of DSC (photo-electrochemical using a nano-particle), The Performance of DSC solar generation system also needs improvement. The approach consists of a Fly-back DC-DC (transfer ratio 1:10) converter to boost the DSC cell voltage to 300VDC. The four switch (MOSFET) inverter is employed to produce 220V, 60Hz AC outputs. High performance, easy manufacturability, lower component count., safety and cost are addressed. Protection and diagnostic features form an important part of the design. Another highlight of the proposed design is the control strategy, which allows the inverter to adapt to the: requirements of the load as well as the power source. A unique aspect of the design is the use of the DSP TMS320LF2406 to control the inverter by current and voltage feed-back. Efficient and smooth control of the: power drawn from the DSC Cell is achieved by controlling the front end DC-DC converter in current mode.