• Title/Summary/Keyword: photo-chemical method

Search Result 143, Processing Time 0.025 seconds

Measurement of the displacement current induced by the dynamic behavior of monolayer at the water surface. (수면상 단분자박의 거동에 의한 변위전류 측정)

  • Park, T.G.;Park, K.H.;Kwon, Y.S.;Kang, D.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.122-125
    • /
    • 1993
  • We investigated the structural changes of the organic molecules of azobenzene-containing long-chain fatty acids which show the cis-trans photo-isomerization characteristics. The dynamic behavior of these polar molecules on the water surface of the Kuhn type LB deposition apparatus was detected electrically by using the displacement current method.

  • PDF

Development of Polymer Coating Method for Stable Stent Coating Using Chemical Bond Between Metal Surface and Polymer (안정된 스텐트 코팅막을 형성하기 위해 금속표면과 고분자 사이의 화학적 결합을 이용한 고분자 코팅법 개발)

  • Nam, Dae-Sik;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • To produce stable polymer coating layer using the interaction between metal stent and polymer layer, Ahx-HSAB was synthesized by coupling 6-aminoheanoic acid (Ahx) with N-Hydroxy succinimidyl 4-azidobenzonate (HSAB) containing photo reactive group. Then, Ahx-HSAB was applied to self·assembled monolayer (SAM) on $TiO_2$-coated surface, since one end of Ahx-HSAB was carboxyl acid which was known to be able to interact with $TiO_2$ surface. That SAM layer was incubated in 1% polycaprolacton (PCL) solution and photoreacted by ultraviolet light (254 nm) to produce the chemical bond between SAM and polymer layer, followed by PCL polymer coating ({\sim}5\;{\mu}m$) by the method of spray coating. The surface change was investigated by measuring of contact angle of the surface. The contact angle values of stainless steel (SS) surface, $TiO_2$-coated surface, SAM layer by Ahx-HSAB, photoreacted surface with PCL and PCL layer by spray coating were 70.48${\pm}$1.89, 38.57${\pm}$3.31, 60.14${\pm}$2.21, 54.91${\pm}$2.70 and 56.47${\pm}$2.12, respectively. The stability of polymer layers was tested by incubation of PCL-coated plates in 0.1M PBS buffer (pH 7.4, 0.05%, Tween 80) with vigorous shaking (200 rpm). While the poiymer layer prepared by these processes showed the intact surface morphology over 3 days, the polymer layers prepared by spray coating of PCL onto SS plate (control 1) and $TiO_2$-coated SS plate (control 2) were Peeled off in 3 days. Thus, the polymer coating method using SAM and photoreaction seems to be a effective method to obtain the stable polymer layer onto SS surface.

Properties Evaluation on Aluminum for Die-casting(ADC 12) to Packing Case of Composite Sensor (복합센서 케이스용 알루미늄 다이캐스팅(ADC 12) 합금의 특성평가)

  • Son, Jae-Hwan;Oh, Sang-Kyun;Kim, Dong-Bae;Han, Chang-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.2
    • /
    • pp.141-145
    • /
    • 2006
  • In case of sense case manufactured by method of outage capacity, sensitivity is declined by outside effect and method of the photo electricity has a problem in transmission. therefore, packing case of composite sense should be developed to improve such a problem about influence of outside environment and its property evaluation has been performed. Mechanical property and result of analysis & test evaluation of Mat'l on aluminum die-casting(ADC 12type) Mat'l developed are as following. Tensile test piece, No. 4 of KS B 0801, has been applied to mechanical property test of Mat'l and It has been tested by method of metal mat'l tensile test(KS B 0802 : 2003). It can be found that physical property to KS(Korea Standard) is excellent. and homogeneous mechanical property appears. Test of Mat'l analysis has been performed by using OE Spectrometer, according to ASTM E 1251 : 1994 regulation. Consequently, good and homogeneous component contents classified by element to standard, except for Fe, have been obtained with coordination of Fe content as below 1.3% from composition standard of Aluminum Die-casting.

  • PDF

A Study on the Highly Effective Treatment of Spent Electroless Nickel Plating Solution by an Advanced Oxidation Process (고도산화공정을 이용한 고농도 무전해 니켈도금 폐액 처리방안 연구)

  • Seo, Minhye;Cho, Sungsu;Lee, Sooyoung;Kim, Jinho;Kang, Yong-Ho;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.270-274
    • /
    • 2015
  • We develop advanced oxidation processes for the treatment of spent electroless nickel plating solution. Apart form recovering nickel by leaching and enrichment, more emphasis is placed on rendering the waste water recyclable via oxidizing phosphite and hypophosphite into phosphate which can then be precipitated easily. $UV/H_2O_2$ process is employed and the conversion efficiency of COD and $PO_4-P$, and $H_2O_2$ consumption are analyzed. Furthermore, the $UV/H_2O_2/O_3$ process in conjunction with $O_3$ generator enables us to not only save the treatment time by 6 hours but also reduce $H_2O_2$ consumption by 30%.

Fabrication of Size-Controlled Hole Array by Surface-Catalyzed Chemical Deposition (표면 촉매 화학 반응을 이용한 크기 조절이 가능한 홀 어레이 제작)

  • Park, Hyung Ju;Park, Jeong Won;Lee, Dae-Sik;Pyo, Hyeon-Bong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.55-58
    • /
    • 2018
  • Low-cost and large-scale fabrication method of nanohole array, which comprises nanoscale voids separated by a few tens to a few hundreds of nanometers, has opened up new possibilities in biomolecular sensing as well as novel frontier optical devices. One of the key aspects of the nanohole array research is how to control the hole size following each specific needs of the hole structure. Here, we report the extensive study on the fine control of the hole size within the range of 500-2500 nm via surface-catalyzed chemical deposition. The initial hole structures were prepared via conventional photo-lithography, and the hole size was decreased to a designed value through the surface-catalyzed chemical reduction of the gold ion on the predefined hole surfaces, by simple dipping of the hole array device into the aqueous solution of gold chloride and hydroxylamine. The final hole size was controlled by adjusting reaction time, and the optimal experimental condition was obtained by doing a series of characterization experiments. The characterization of size-controlled hole array was systematically examined on the image results of optical microscopy, field emission scanning electron microscopy(FESEM), atomic-force microscopy(AFM), and total internal reflection microscopy.

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

Facile synthesis of ZnBi2O4-graphite composites as highly active visible-light photocatalyst for the mineralization of rhodamine B

  • Nguyen, Thi Mai Tho;Bui, The Huy;Dang, Nguyen Nha Khanh;Ho, Nguyen Nhat Ha;Vu, Quang Huy;Ngo, Thi Tuong Vy;Do, Manh Huy;Duong, Phuoc Dat;Nguyen, Thi Kim Phuong
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2442-2451
    • /
    • 2018
  • Novel highly active visible-light photocatalysts in the form of zinc bismuth oxide ($ZnBi_2O_4$) and graphite hybrid composites were prepared by coupling via a co-precipitation method followed by calcination at $450^{\circ}C$. The asprepared $ZnBi_2O_4$-graphite hybrid composites were tested for the degradation of rhodamine B (RhB) solutions under visible-light irradiation. The existence of strong electronic coupling between the two components within the $ZnBi_2O_4$-graphite heterostructure suppressed the photogenerated recombination of electrons and holes to a remarkable extent. The prepared composite exhibited excellent photocatalytic activity, leading to more than 93% of RhB degradation at an initial concentration of $50mg{\cdot}L^{-1}$ with 1.0 g catalyst per liter in 150 min. The excellent visible-light photocatalytic mineralization of $ZnBi_2O_4-1.0graphite$ in comparison with pristine $ZnBi_2O_4$ could be attributed to synergetic effects, charge transfer between $ZnBi_2O_4$ and graphite, and the separation efficiency of the photogenerated electrons and holes. The photo-induced $h^+$ and the superoxide anion were the major active species responsible for the photodegradation process. The results demonstrate the feasibility of $ZnBi_2O_4-1.0graphite$ as a potential heterogeneous photocatalyst for environmental remediation.

The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam (NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과)

  • Jo, Hyun-Gi;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.328-335
    • /
    • 2019
  • Nb-doped $TiO_2$(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ${\sim}25.3^{\circ}$, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).

Synthesis and Characterization of UV-curable Aliphatic Epoxy Acrylate (자외선 경화형 지방족 에폭시 아크릴레이트의 합성 및 특성분석)

  • Kim, Young Chul;Lee, Byung-Hoon
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.191-198
    • /
    • 2009
  • UV-curable aliphatic epoxy acrylates were prepared by the reaction of glycerol diglycidyl ether (GDE) with 2-carboxyethyl acrylate (2-CEA) or 2-hydroxyethyl acrylate (2-HEA). The structures of the epoxy acrylates were characterized by FT-IR, $^1H$-NMR, and $^{13}C$-NMR and the yield was obtained by prep-LC. The UV- and the thermal-curing behaviors of the product were investigated using photo-DSC and DSC, respectively. The reactivity of 2-CEA was higher than 2-HEA and the yield of the product (GEA-C) which was prepared using 2-CEA was about 83%. The maximum UV-curing time ($T_{max}$) of the GEA-C contained non-reactive components and by-product was about 10 seconds. The GEA-C showed low color difference (${\Delta}E^*$), low viscosity, and good thermal stability - its value was 2.51, 192 cps, and $299^{\circ}C$ (at 5% weight loss), respectively. The activation energies ($E_a$) of thermal-curing reaction calculated from Kissinger and Ozawa-Flynn-Wall method were 91~92 kJ/mol.

  • PDF

Multiplexed Hard-Polymer-Clad Fiber Temperature Sensor Using An Optical Time-Domain Reflectometer

  • Lee, Jung-Ryul;Kim, Hyeng-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Optical fiber temperature sensing systems have incomparable advantages over traditional electrical-cable-based monitoring systems. However, the fiber optic interrogators and sensors have often been rejected as a temperature monitoring technology in real-world industrial applications because of high cost and over-specification. This study proposes a multiplexed fiber optic temperature monitoring sensor system using an economical Optical Time-Domain Reflectometer (OTDR) and Hard-Polymer-Clad Fiber (HPCF). HPCF is a special optical fiber in which a hard polymer cladding made of fluoroacrylate acts as a protective coating for an inner silica core. An OTDR is an optical loss measurement system that provides optical loss and event distance measurement in real time. A temperature sensor array with the five sensor nodes at 10-m interval was economically and quickly made by locally stripping HPCF clad through photo-thermal and photo-chemical processes using a continuous/pulse hybrid-mode laser. The exposed cores created backscattering signals in the OTDR attenuation trace. It was demonstrated that the backscattering peaks were independently sensitive to temperature variation. Since the 1.5-mm-long exposed core showed a 5-m-wide backscattering peak, the OTDR with a spatial resolution of 40 mm allows for making a sensor node at every 5 m for independent multiplexing. The performance of the sensor node included an operating range of up to $120^{\circ}C$, a resolution of $0.59^{\circ}C$, and a temperature sensitivity of $-0.00967dB/^{\circ}C$. Temperature monitoring errors in the environment tests stood at $0.76^{\circ}C$ and $0.36^{\circ}C$ under the temperature variation of the unstrapped fiber region and the vibration of the sensor node. The small sensitivities to the environment and the economic feasibility of the highly multiplexed HPCF temperature monitoring sensor system will be important advantages for use as system-integrated temperature sensors.