• Title/Summary/Keyword: phosphotransferase

Search Result 130, Processing Time 0.025 seconds

Altered Expression of Pyrophosphate: Fructose-6-Phosphate 1-Phosphotransferase Affects the Growth of Transgenic Arabidopsis Plants

  • Lim, Hyemin;Cho, Man-Ho;Jeon, Jong-Seong;Bhoo, Seong Hee;Kwon, Yong-Kook;Hahn, Tae-Ryong
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.641-649
    • /
    • 2009
  • Pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the reversible interconversion of fructose-6-phosphate and fructose-1,6-bisphosphate, a key step in the regulation of the metabolic flux toward glycolysis or gluconeogenesis. To examine the role of PFP in plant growth, we have generated transgenic Arabidopsis plants that either overexpress or repress Arabidopsis PFP subunit genes. The overexpressing lines displayed increased PFP activity and slightly faster growth relative to wild type plants, although their photosynthetic activities and the levels of metabolites appeared not to have significantly changed. In contrast, the RNAi lines showed significantly retarded growth in parallel with the reduced PFP activity. Analysis of photosynthetic activity revealed that the growth retardation phenotype of the RNAi lines was accompanied by the reduced rates of $CO_2$ assimilation. Microarray analysis of our transgenic plants further revealed that the altered expression of $AtPFP{\beta}$ affects the expression of several genes involved in diverse physiological processes. Our current data thus suggest that PFP is important in carbohydrate metabolism and other cellular processes.

Phosphoryl Transferring Activity was Revealed from $F_1-ATPase$ of Escherichia coli by $^{31}P$ NMR Investigation

  • Sohn, Joon-Hyung;NamKung, Jun;Yoon, Joon-Ho;Woo, Mi-Kyoung;Yeh, Byung-Il;Choi, Jong-Whan;Kim, Hyun-Won
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.169-173
    • /
    • 2007
  • [ $^{31}PNMR$ ] spectroscopy revealed the adenylate kinase-like activity and the phosphotransferase activity from $F_1-ATPase$ of Escherichia coli. Incubation of $F_1-ATPase$ with ADP in the presence of $Mg^{2+}$ shows the appearance of $^{31}P$ resonances from AMP and Pi, suggesting the generation of AMP and ATP by adenylate kinase-like activity and the subsequent hydrolysis to Pi. Incubation of $F_1-ATPase$ with ADP in the presence of methanol shows additional peak from methyl phosphate, suggesting phosphotransferase activity of $F_1-ATPase$. Both adenylate kinase-like activity and the phosphotransferase activity has not been reported from $F_1-ATPase$ from Escherichia coli. $^{31}P$ NMR proved that it could be a valuable tool for the investigation of phosphorous related enzyme.

  • PDF

Cloning, Expression, and Nucleotide Sequencing of the Gene Encoding Glucose Permease of Phosphotransferase System from Brevibacterium ammoniagenes

  • Yoon, Ki-Hong;Yim, Hyouk;Jung, Kyung-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.214-221
    • /
    • 1998
  • A Brevibacterium ammoniagenes gene coding for glucose/mannose-specific enzyme II ($EII^{Glc}$) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned by complementing an Escherichia coli mutation affecting a ptsG gene, and the complete DNA nucleotide sequence was determined. The cloned gene was identified to be a ptsG, which enables the E. coli transportment to use glucose more efficiently than mannose as the sole carbon source in an M9 minimal medium. The ptsG gene of B. ammoniagenes consists of an open reading frame of 1,983 nucleotides putatively encoding a polypeptide of 661 amino acid residues and a TAA stop codon. The deduced amino acid sequence of the B. ammoniagenes $EII^{Glc}$ shows, at $46\%$, the highest degree of sequence similarity with the Corynebacterium glutamicum EII specific for both glucose and mannose. In addition, the $EII^{Glc}$ shares approximately $30\%$ sequence similarities with sucrose-specific and ${\beta}$-glucoside-specific EIIs of the several bacteria belonging to the glucose-PTS class. The 161-amino-acid C-terminal sequence of $EII^{Glc}$ is also similar to that of E. coli enzyme $IIA^{Glc}$, specific for glucose ($EIIA^{Glc}$). The B. ammoniagenes $EII^{Glc}$ consists of three domains; a hydrophobic region (EIIC) and two hydrophilic regions (EIIA, EIIB). The arrangement of structural domains, IIBCA, of the $EII^{Glc}$ is identical to those of EIIs specific for sucrose or ${\beta}$-glucoside. While the domain IIA was removed from the B. ammoniagenes $EII^{Glc}$ the remaining domains IIBC were found to restore the glucose and mannose-utilizing capacity of E. coli mutant lacking $EII^{Glc}$ activity with $EIIA^{Glc}$ of the E. coli mutant. $EII^{Glc}$ contains a histidine residue and a cysteine residue which are putative phosphorylation sites for the protein.

  • PDF

Prenatal Diagnosis of Mucolipidosis Type II: Comparison of Biochemical and Molecular Analyses

  • Kosuga, Motomichi;Okada, Michiyo;Migita, Osuke;Tanaka, Toju;Sago, Haruhiko;Okuyama, Torayuki
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.19-22
    • /
    • 2016
  • Purpose: Mucolipidosis type II (ML II), also known as I-cell disease is an autosomal recessive inherited disorder of lysosomal enzyme transport caused by a deficiency of the uridine diphosphate (UDP)-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase). Clinical manifestations are skeletal abnormalities, mental retardation, cardiac disease, and respiratory complications. A severely and rapidity progressive clinical course leads to death before 10 years of age. Methods/Results: In this study we diagnosed three cases of prenatal ML II in two different at-risk families. We compared two procedures -biochemical analysis and molecular analysis - for the prenatal diagnosis of ML II. Both methods require an invasive procedure to obtain specimens for the diagnosis. Biochemical analysis requires obtaining cell cultures from amniotic fluid for more than two weeks, and would result in a late diagnosis at 19 to 22 weeks of gestation. Molecular genetic testing by direct sequence analysis is usually possible when mutations are confirmed in the proband. Molecular analysis has an advantage in that it can be performed during the first-trimester. Conclusion: Molecular diagnosis is a preferable method when a prompt decision is necessary.

Cloning and Expression of the Gene Encoding Glucose Permease of the Phosphotransferase System from Brevibacterium flavum in Escherichia coli

  • Kwon, Il;Lee, Kyu-Nam;Lee, Jung-Kee;Pan, Jae-Gu;Oh, Tae-Kwang;Lee, Hyung-Hoan;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.188-193
    • /
    • 1995
  • A Brevibacterium flavum gene coding for glucose permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned by complementing the Escherichia coli ZSCl13 mutations affecting a ptsG gene with the B. flavum genomic library. From the E. coli clone grown as red colony on a MacConkey plate supplemented with glucose as an additional carbon source, a recombinant plasmid was isolated and named pBFT93. The plasmid pBFT93 was identified as carrying a 3.6-kb fragment of B. flavum chromosomal DNA which enables the E. coli transformant to use glucose or man nose as a sole carbon source in an M9 minimal medium. The non-metabolizable sugar analogues, 2-deoxy-D-glucose (2-DG) and methyl-$\alpha$-D-glucopyranoside (MeGlc) affected the growth of ZSCl13 cells carrying the plasmid pBFT93 on minimal medium supplemented with non-PTS carbohydrate, glycerol, as a sole cabon source, while the analogues did not repress the growth of ZSCl13 cells without pBFT93. It was also found that both $2-deoxy-D-[U-^{14}C]glucose{\;}and{\;}methyl-{\alpha}-D-[U-^{14}C]glucopyranoside$ could be effectively transported into ZSCl13 cells transformed with plasmid pBFT93. Several in vivo complementation studies suggested that the B. flavum DNA in pBFT93 encodes a glucose permease specific for glucose and mannose.

  • PDF

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

A Study on the Screening of the Novel Genes Associated with Lysosomal Trafficking and Mutation Detection in Fibroblasts of the Patients with Mucolipidosis type II and III (리소좀 교통 이상을 초래하는 뮤코지방증 2형과 3형 환자의 섬유아세포를 이용한 신규 유전자 탐색 및 돌연변이에 대한 연구)

  • Song, Seng Mi;Chang, Soo Hee;Paik, Kyung Hoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.65-75
    • /
    • 2005
  • Purpose: To understand genetic differences and similarities between mucolipidosis and control. Methods: Using the fibroblast of the mucolipidosis II and control, forward and reverse subtracted libraries were constructed. Among these clones, we investigated mutations in the GNPTA (MGC4170) gene, which codes for the ${\alpha}/{\beta}$ subunits of phosphotransferase, and in the GNPTAG gene, which codes for the ${\gamma}$ subunits in 5 Korean patients with mucolipidosis type II or IIIA. Result: Several differentially expressed cDNAs were cloned and their sequences were determined. Mutation analysis of the interested gene, GNPTA was performed and we identified 7 mutations in the GNPTA gene, but none in the GNPTAG gene. The mutations in type II patients included p.Q104X(c.310C>T), p.R1189X(c.3565C>T), p.S1058X(c.3173C>G), p.W894X(c.2681G>A) and p.H1158fsX15(c.3474_3475delTA), all of which are non-sense or frame shift mutations. However, a splicing site mutation, IVS13+1G>A (c.2715+1G>A) was detected along with a non-sense or a frame shift mutation (p.R1189X or p.E858fsX3(c.2574_2575delGA)) in two mucolipidosis type IIIA patients. Conclusion: This report shows that mutations in the GNPTA gene coding for the ${\alpha}{\beta}$subunits of phosphotransferase, and not mutations in the GNPTAG gene, account for most of mutations found in Korean patients with mucolipidosis type II or IIIA.

  • PDF

Construction of an Escherichia-Pseudomonas Shuttle Vector Containing an Aminoglycoside Phosphotransferase Gene and a lacZ' Gene for $\alpha$-Complementation

  • Lee, Bheong-Uk;Hong, Ja-Heon;Kahng, Hyung-Yeel;Oh, Kye-Heon
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.671-673
    • /
    • 2006
  • A new 4.87 kb Escherichia-Pseudomonas shuttle vector has been constructed by inserting a 1.27 kb DNA fragment with a replication origin of a Pseudomonas plasmid pRO1614 into the 3.6 kb E. coli plasmid pBGS18. This vector, designated pJH1, contains an aminogly-coside phosphotransferase gene (aph) from Tn903, a lacZ' gene for $\alpha$-complementation and a versatile multiple cloning site possessing unique restriction sites for EcoRI, SacI, KpnI, SmaI, BamHI, XbaI, SalI, BspMI, PstI, SphI, and HindIII. When pJH1 was transformed into E. coli DHS${\alpha}$ and into P. putida HK-6, it was episomally and stably maintained in both strains. In addition, the enhanced green fluorescent protein (EGFP) gene which was transcriptionally cloned into pJH1 rendered E. coli cells fluorescence when its transformants were illuminated at 488 nm.

3',5'-Cyclic Adenosine Monophosphate (cAMP) as a Signal and a Regulatory Compound in Bacterial Cells (원핵세포에서 신호물질 및 조절인자로서의 3',5'-Cyclic Adenosine Monophosphate의 역할)

  • Chun, Se-Jin;Seok, Young-Jae;Lee, Kyu-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.289-298
    • /
    • 2006
  • 3',5'-cyclic adenosine monophosphate (cAMP) is an important molecule, which mediates diverse cellular processes. For example, it is involved in regulation of sugar uptake/catabolism, DNA replication, cell division, and motility in various acterial species. In addition, cAMP is one of the critical regulators for syntheses of virulence factors in many pathogenic bacteria. It is believed that cAMP acts as a signal for environmental changes as well as a regulatory factor for gene expressions. Therefore, intracellular concentration of cAMP is finely modulated by according to its rates of synthesis (by adenylate cyclase), excretion, and degradation (by cAMP phosphodiesterase). In the present review, we discuss the bacterial physiological characteristics governed by CAMP and the molecular mechanisms for gene regulation by cAMP. Furthermore, the effect of cAMP on phosphotransferase system is addressed.

The Purfication and Characterization of Macrolide-Phosphotransferase K of Escherichia coli 209K Highly Resistant to Erythromycin (에리스로마이신 고도내성 대장균 209K 유래 마크로라이드-포스포트란스페라제 K의 정제 및 특성)

  • Kim, Sook-Kyung;Oh, Tae-Gwon;Baek, Moon-Chang;Hong, Jong-Soo;Kim, Byong-Kak;Choi, Eung-Chil
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.359-364
    • /
    • 1997
  • Resistance gene mphK was cloned from Escherichia coli 209K strain which is highly resistant to erythromycin (EM). By using the cloned plasmid pGE64, E. coli NM522 was transformed. The comparison of macrolide-phosphotransferase K [MPH(K)] activity between E. coli 209K and E. coli NM522(pGE64) showed that the total enzyme activity of MN522(pGE64) was fifty-fole higher than that of 209K. To identify characteristics of MPH(K) more precisely. MPH(K) was isolated and purified from the NM522 (pGE64). The final purification f MPH(K) through several stages of purification process was 89 fole and the overall recovery was 11%. This enzyme was monomer with the molecular weight of 34 kDa and its isoelectric point (pI) was 5.0. The optimal pH and temperature for activity were 8.0 and $40^{\circ}C$, respectively.

  • PDF