• Title/Summary/Keyword: phosphorus solubility

Search Result 31, Processing Time 0.029 seconds

법랑질 표면에 미치는 산성불소인산용액의 내산효과

  • ChoI, Eu-Gne
    • The Journal of the Korean dental association
    • /
    • v.12 no.5
    • /
    • pp.327-332
    • /
    • 1974
  • The effects of enamel solubility by the varying concentration of fluoride and phosphate as well as pH of the acid fluoride-phosphate solutions were tested and compared with th 7% stannous fluoride solution. The smooth surface of the sound permanent 1st premolars were demineralized by the Buttner's method. And the phosphorus extracted from the 1st premolars were analyzed by the Fiske and Subbarow's method. Enamel smooth surfaces treated with the acid fluoride-phosphate solution and the 8% stannous fluoride solution were obserbed electron-microscopically by the Filmy Replica method. The results of this study were summarized as follows: !. The least enamel dissolution rate was observed at the acid fluoride-phosphate solution contained 1.25% fluorine, 0.5% phosphate, and pH 4. 2. The anti-cariogenic effects comparison between the acid fluoride-phosphate solution and 8% stannous fluoride, the former was higher.

  • PDF

Physiochemical Properties of Dual-Modified (Hydroxypropylated and Cross-linked) Rice Starches (하이드록시프로필화 후 가교화시킨 복합변성 쌀 전분의 이화학적 특성)

  • Choi, Hyun-Wook;Kim, Sang-Kab;Choi, Sung-Won;Kim, Chang-Nam;Yoo, Seung-Seok;Kim, Byung-Yong;Baik, Moo-Yeol
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.332-337
    • /
    • 2011
  • Physicochemical properties of hydroxypropylated and cross-linked (HPCL) rice starch were investigated. Dual modification of rice starch was carried out by hydroxypropylation using propylene oxide (2, 6, and 12%) and then crosslinking using phosphorus oxychloride (0.005% and 0.02%). Swelling power of dual-modified rice starch increased at lower temperature (60$^{\circ}C$) than that of native rice starch (70$^{\circ}C$). HPCL rice starch showed slightly lower solubility (1.6-6.1%) than native rice starch (2.2-13.8%). Solubility and swelling power tended to gradually increase with increasing phosphorus oxychloride contents. RVA pasting temperature (66.2-70.8$^{\circ}C$) and peak viscosity (160.6- 171.1 RVU) of HPCL rice starch were lower than that of those of native starch (71.3$^{\circ}C$, 190.4 RVU) and decreased with increasing propylene oxide concentration. DSC thermal transitions of HPCL rice starches shifted to lower temperature and show less amylopectin melting enthalpy (11.8-9.8 J/g) than that of native rice starch (11.9 J/g). Overall, physicohemical properties of HPCL rice starches were highly dependent on hydroxypropylation rather than crosslinking.

RUMINAL SOLUBILIZATION OF MACROMINERALS IN SELECTED PHILIPPINE FORAGES

  • Serra, S.D.;Serra, A.B.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.75-81
    • /
    • 1996
  • The dry matter (DM) disappearance and ruminal solubility of calcium (Ca), phosphorus (P), magnesium (Mg) and potassium (K) in eight Philippine forages were studied. The forages were: paragrass (Brachiaria mutica (Forsk.) Stapf), stargrass (Cynodon plectostachyum Pilger), napiergrass (Pennisetum purpureum Schumach), clopo (Calopogonium mucconoides Desv.), centrocema (Centrocema pubescens Benth.), gliricidia (Gliricidia sepium (Jacq.) Walp.), leucaena (Leucaena leucocephala (Lam.) de Wit.) and sesbania (Sesbania grandiflora (L.) Poir. Nylon bags with samples were incubated for 0, 3, 6, 12, 24, 48 and 72 h in rumen cannulated sheep. The 0-h bags were washed with deionized water. For the 0-h samples, 20.4, 17.2, 50.7, 52.2 and 80.1% of the DM, Ca, P, Mg and K was solubilized, respectively. At 3-h incubation period, DM disappearance was 10 percentage units higher than that of 0-h incubation whereas mineral disappearance increased by 43, 21, 30 and 13% for Ca, P, Mg and K, respectively. At 72-h incubation period, greater proportion of DM, Ca, especially in P, Mg and K was solubilized with a value of 73.8, 71.5, 85.6, 91.4 and 98.2%, respectively. The average particulate passage rate obtained in the present study was 1.9%/h where as the range of disappearance rates of various mineral elements were : 0.4 to 1.2%/h for Ca, 0.1 to 1.6%/h for P, 0.7 to 2%/h for Mg and 0.1 to 2%/h for K. The effective ruminal solubilization (ERS) of the macrominerals was calculated where particulate passage rate and disappearance rate of the various elements were included in the equation. The ERS of Ca, P, Mg and K was 50.0, 72.6, 83.9 and 94.5%, respectively. Species differences (p<0.05) on the various mineral solubilities were also observed. This study shows that ruminal solubility of macrominerals in selected Philippine forages is K > Mg > P > Ca.

Extraction of Soybean Oil Using Supercritical Carbon Dioxide and Its Characteristics (초임계 탄산가스를 이용한 대두유의 추출과 추출대두유의 성질)

  • Kim, In-Hwan;Yoon, Suk-Hoo
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.677-682
    • /
    • 1991
  • Extraction of soybean oil from full tat soybean flour was performed using a supercritical carbon dioxide extraction system. Extraction pressure and temperature of the process were 3,000-7,000 psig and $40-70^{\circ}C$, repectively. For the extraction of lg of soybean oil, 25l of carbon was consumed at 7,000 psig and $60^{\circ}C$, whereas more than 2501 of carbon dioxide was consumed at 3,000 psig and $60^{\circ}C$. The solubility of soybean oil in supercritical carbon dioxide decreased with the increase in temperature below 6,000 psig, and the reverse trend was observed above 6,000 psig. At 6,000 psig the solubilities were shown to be, constant regardless of extraction temperature. Soybean oils , extracted with supercritical carbon dioxide were lighter in color and contained less phosphorus than those extracted with hexane.

  • PDF

Nitrate Removal of Flue Gas Desulfurization Wastewater by Autotrophic Denitrification

  • Liu, L.H.;Zhou, H.D.;Koenig, A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.46-52
    • /
    • 2007
  • As flue gas desulfurization (FGD) wastewater contains high concentrations of nitrate and is very low in organic carbon, the feasibility of nitrate removal by autotrophic denitrification using Thiobacillus denitrificans was studied. This autotrophic bacteria oxidizes elemental sulfur to sulfate while reducing nitrate to elemental nitrogen gas, thereby eliminating the need for addition of organic compounds such as methanol. Owing to the unusually high concentrations of dissolved salts $(Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+,\;B^+,\;SO_4^{2-},\;Cl^-,\;F^-,)$ in the FGD wastewater, extensive laboratory-scale and pilot-scale tests were carried out in sulfur-limestone reactors (1) to determine the effect of salinity on autotrophic denitrification, (2) to evaluate the use of limestone for pH control and as source of inorganic carbon for microbial growth, and, (3) to find the optimum environmental and operational conditions for autotrophic denitrification of FGD wastewater. The experimental results demonstrated that (1) autotrophic denitrification is not inhibited up to 1.8 mol total dissolved salt content; (2) inorganic carbon and inorganic phosphorus must be present in sufficiently high concentrations; (3) limestone can supply effective buffering capacity and inorganic carbon; (4) the high calcium concentration may interfere with pH control, phosphorus solubility and limestone dissolution, hence requiring pretreatment of the FGD wastewater; and, 5) under optimum conditions, complete autotrophic denitrification of FGD wastewater was obtained in a sulfur-limestone packed bed reactor with a sulfur:limestone volume ratio of 2:1 for volumetric loading rates up to 400g $NO_{3^-}N/m^3.d$. The interesting interactions between autotrophic denitrification, pH, alkalinity, and the unusually high calcium and boron content of the FGD wastewater are highlighted. The engineering significance of the results is discussed.

  • PDF

The Fate and Factors Determining Arsenic Mobility of Arsenic in Soil-A Review

  • Lee, Kyo Suk;Shim, Ho Young;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • Arsenic which is found in several different chemical forms and oxidation states and causes acute and chronic adverse health effects is a toxic trace element widely distributed in soils and aquifers from both geologic and anthropogenic sources. Arsenic which has a mysterious ability to change color, behavior, reactivity, and toxicity has diverse chemical behavior in the natural environment. Arsenic which has stronger ability to readily change oxidation state than nitrogen and phosphorus due to a consequence of the electronic configuration of its valence orbitals with partially filled states capable of both electron donation and acceptance although the electronegativity of arsenic is greater than that of nitrogen and similar to that of phosphorus. Arsenate (V) is the thermodynamically stable form of As under aerobic condition and interacts strongly with solid matrix. However, it has been known that adsorption and oxidation reactions of arsenite (III) which is more soluble and mobile than As(V) in soils are two important factors affecting the fate and transport of arsenic in the environment. That is, the movement of As in soils and aquifers is highly dependent on the adsorption-desorption reactions in the solid phase. This article, however, focuses primarily on understanding the fate and speciation of As in soils and what fate arsenic will have after it is incorporated into soils.

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.

Extraction and Separation of Eicosapentaenoic Acid from Sardine by using Supercritical $CO_2$ Extraction (초임계 추출에 의한 정어리에서 Eicosapentaenoic Acid의 추출 및 분리)

  • 이병호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.629-635
    • /
    • 1993
  • Full fat sardine oil is readily extracted with supercritical carbon dioxide($SC-CO_2$) at pressure of 5,000~8,000 psig. and temperature of 50~$80^{\circ}C$. Under these conditions $SC-CO_2$ has the density of fluid and diffusivity of gas. Therefore, equilibrium solubility is readily achieved in a column batch extractor which permits high gas flow rates. The results showed that extraction was higher at the pressure of 6,000 psig. and $60^{\circ}C$. Fish oil extracted with $SC-CO_2$ is lighter in color, smells less and contains less iron and phosphorus than hexane-extracted crude oil from the same sardine oil. Eicosapentaenoic acid($C_{20-5}$) in sardine oil was fractionated at 90.5% by the $SC-CO_2$ extractor with heat exchange.

  • PDF

Phosphate solubilizing effect by two Burkholderia bacteria isolated from button mushroom bed (양송이배지로부터 분리한 두 Burkholderia 속 세균에 의한 인산가용화 효과)

  • Oh, Jong-Hoon;Kim, Young-Jun;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.208-213
    • /
    • 2020
  • Burkholderia contaminans PSB-A and Burkholderia ambifaria PSB-B were isolated from button mushroom bed to estimate their phosphate solubility. The phosphate-solubilizing abilities of these strains were assessed by measuring the phosphorus content in a single and co-inoculation medium for 7 days. The co-inoculation of these two strains released the highest content of soluble phosphorus (166.3 ㎍ mL-1) into the medium, followed by single inoculation of B. contaminans PSB-A (143.73 ㎍ mL-1) and B. ambifaria PSB-B (127.1 ㎍ mL-1). The highest pH reduction, organic acid production, and glucose consumption were also observed in the co-inoculation medium. According to the plant growth promotion bioassay, co-inoculation enhanced the growth of romaine lettuce much more than the single inoculation (20.4% for leaf widths and 16.6% for root lengths). Although no significant difference was noted between single and co-inoculation of bacterial strains in terms of phosphorous release and plant growth, co-inoculation of PSB may have a beneficial effect on crop growth due to a synergistic effect between the strains.

Influence of Different Phosphorus Fertilizer to Barley Growth and Yield (맥류에 대한 각종 인산질 비료의 비효검정 시험)

  • Cho, C.H.;Ha, Y.W.;Hong, B.H.;Kim, D.K.;Huh, W.S.;Lee, J.S.;Kang, J.C.;Chai, J.S.;Lee, D.K.;Park, K.Y.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.13
    • /
    • pp.119-126
    • /
    • 1973
  • In order to investigate the effects of phosphorous fertilizer such as fused Phosphate, compound fertilizer and triple phosphate on barley(growth and yield at the fixed level of nitrogen and potassium, 4 level of hosphorous) has been tested at Suwon. Iri. Kwangju ani Daegu with randomized completeblock design. The results obtained could be summarized as follows. 1. In four locations. increased application of phosphorus have brought earlier maturity in barley regardless the type of fertilizer but fused phosphate considered to have more effects on stimulation of maturity of barley compare with the others. 3. Fused phosphate increased yield higher by-8kg/10a application compare with the same level of compound fertilizer and triple phosphate but there was no differences in yield at 12kg/10a phosphate but there was no differences in yield at 12kg/l0a application among the fertilizers except Kwangju and Suwon. 3. Grain weight was considerably higher in application of fused phosphate Thus are considered effects phosphate. 4. Optimum amount of phosphorous fertilizer was considered 8kg/l0a. Application of 4kg per 10a produced lower yield than 8kg and slightly or no increased yield was observed in 12kg application. 5. Among the 4kg/10a applied condition of phosphorous fertilizers, yield was decreased at fused phosphate treatment compare with the others and this fact resulted supposedly due to the lower portion of valid phosphorus in fused phosphate because of its citric acid solubility. At level of 12kg/10a application fused phosphate was considered more effective in yield increment.

  • PDF