• Title/Summary/Keyword: phosphorus limitation

Search Result 48, Processing Time 0.02 seconds

Control of Wastewater Treatment Removing Phosphate Based on ASM No. 2 Simplified Model and Investigation of Luxury Uptake Limitation (ASM No. 2 간략화 모델에 기초한 인산염의 제어 및 인섭취 제한현상에 대한 고찰)

  • Kim, Shin-Geol;Choi, In-Su;Koo, Ja-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.181-189
    • /
    • 2008
  • Phosphate is the limiting factor leading to the eutrophication in nature and has been usually removed by the luxury uptake of PAOs(Phosphate accumulating organisms). The purpose of this study was the control of wastewater treatment removing phosphorus. The control of wastewater treatment process was performed by optimal and adaptive control. They were performed as followings. Firstly the inflow phosphate concentration was measured and the optimal aeration time was calculated by simplified ASM No. 2 for the phosphate to be 1.0 mg/L in effluent. It was optimal control. But when the phosphate concentration in effluent was not 1.0 mg/L, adaptive control was necessary to coincide the objective of control with real value. Then it was performed as the objective phosphate concentration in effluent was changed according to calculation of errors and it was adaptive control. The wastewater treatment process had been controlled by them for about one month. The range of phosphate concentration in effluent 0.2$\sim$3.2 mg/L and the average of it was 1.0 mg/L. The limitation of luxury uptake occurred two times while wastewater treatment process was running. After the analysis of laboratory tests, we knew the reasons were the shortage of ammonia nitrogen and the excessive aeration.

Controlling Bacterial Regrowth Potential by the Limitation of Nutrients in Drinking Water (영양원의 제한에 의한 수돗물에서의 세균재증식능 억제)

  • Oh, Jung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.431-437
    • /
    • 2005
  • In this study, the profiles of the bacterial regrowth of indigenous bacteria in tap water and Pseudomonas fluorescence P17 were investigated for cases when carbon (glucose), and/or nitrogen ($NO_3^-$-N), and/or phosphorus ($PO_4^{3-}$-P) were added below sufficient nutrient concentration (SNC) and when carbon sources (glucose and acetate) and nitrogen sources ($NH_4^+$-N and $NO_3^-$-N) were added together. The bacterial regrowth was decreased with limitation of nutrients, and were lowered relatively in the sample, which plural nutrients were limited. In addition, phosphate might be the effective nutrient to control the bacterial regrowth in drinking water because the bacterial regrowth was significantly decreased by the limitation of phosphate. In contrast, the bacterial regrowth was retarded with increasing the concentration of $NO_3^-$-N. For simultaneously adding carbon(glucose or acetate) and nitrogen sources ($NH_4^+$-N and $NO_3^-$-N), the regrowth counts appeared highly in the condition, for both glucose and acetate. And, the regrowth was increased with increasing $NH_4^+$-N concentration as a nitrogen source.

Water Quality and Chlorophyll-a at the Birth Stage of a Large Reclaimed Estuarine Lake in Korea (Lake Hwaong) (간척하구호 (화옹호) 태동기의 수질과 엽록소-a 변화)

  • Kim, Ho-Sub;Chung, Mi-Hee;Choi, Chung-Il;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.455-462
    • /
    • 2003
  • This study evaluated the change of water quality and chlorophyll - a at the birth stage of a large reclaimed estuarine lake (Lake Hwaong) of which the dike was finally constructed in March, 2002. Physico -chemical parameters and chlorophyll - a were investigated along a longitudinal transect, including 3 in-lake sites and 1 out-lake site from June to November, 2002. Salinity at all in-lake sites was over 21 psu during the study period, indicating that lake is still in the seawater phase. Salinity was periodically diluted at times when precipitation was high, especially in August. Chemocline was established in July near the dam site, and correspondingly vertical profile of dissolved oxygen was very clear during that Period. Total nitrogen and phosphorus concentrations at all lake sites were in the eutrophic range, and they were especially high at the stream inlet site. Nutrients concentration was not much varied vertically but significantly varied temporally, and correlated significantly with precipitation and chlorophyll-a concentration, indicating that inflowing water from the watershed seemed not to improve lake water by dilution but cause eutrophication of the lake, and thereby stimulate phytoplankton development. Based on the analyses of nutrient ratio (N/P) and trophic state deviation, both phosphorus and nitrogen appeared to limit phytoplankton growth in the lake. Phosphorus limitation appeared to be probable at all in-lake sites with being most severe at the stream inlet site. Nitrogen limitation seemed to occur at both in-lake and out-lake sites. These results indicate that in Lake Hwaong experiencing the very early stage of a reclaiming lake, water quality and phytoplankton development appear to be affect-ed largely by salinity and hydrology and nutrients from the inflowing water. Lake biogeochemistry is still very unstable, and thus further long-term study is necessary to understand the effects of seawater to freshwater conversion on lake biology and water chemistry.

Effects of Nutrients and N/P Ratio Stoichiometry on Phytoplankton Growth in an Eutrophic Reservoir (부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.36-46
    • /
    • 2004
  • We evaluated the effect of limiting nutrients and N/P ratio on the growth of phytoplankton in a small eutrophic reservoir from November 2002 to December 2003. Nutrient limitation was investigated seasonally using nutrient enrichment bioassay (NEB). DIN/DTP and TN/TP ratio (by weight) of the reservoir during the study period ranged 17${\sim}$187 and 13${\sim}$60, respectively. Most of nitrogen in the reservoir account for $NO_3$-N, but sharp increase of ammonia was evident during the spring season. Seasonal variation of dissolved inorganic phosphorus concentration was relatively small. DTP ranged 26.5${\sim}$10.1 ${\mu}g\;P\;L^{-1}$, and the highest and lowest concentration was observed in August and December, respectively. Chlorophyll a concentration ranged 28.8${\sim}$109.7 ${\mu}g\;L^{-1}$, and its temporal variation was similar to that of cell density of phytoplankton. Dominant phytoplankton species were Bacillariphyceae (Melosira varians) and Chlorophyceae (Dictyosphaerium puchellum) in Spring (March${\sim}$April). Cyanophyceae, such as Osillatoria spp., Microcystis spp., Aphanizomenon sp. dominated from May to the freezing time. TN/TP ratio ranged from 46 to 13 (Avg. 27${\pm}$6) from June to December when cyanobacteria (Microcystis spp.) dominated. p limitation for algal growth measured in all NEB experiments (17cases), while N limitation occurred in 8 out of 17 cases. The growth rates of phytoplankton slightly increased with decreasing of DIN/DTP ratio. Evident increase was observed in the N/P ratio of > 30, and it was sustained with DTP increase until 50 ${\mu}g\;P\;L^{-1}$. Under the same N/P mass ratio with the different N concentrations (0.07, 0.7and 3.5 mg N $L^{-1}$), Microcystis spp. showed the highest growth rate in the N/P ratio of< 1 with nitrogen concentration of 3.5 mg N $L^{-1}$). The responses of phytoplankton growth to phosphate addition were clearly greater with increase of N concentration. These results indicate that the higher nitrogen concentration in the water likely induce the stronger P-limitation on the phytoplankton growth, while nitrogen deficiency is not likely the case of nutrient limitation.

Nitrogen and Phosphorus Uptake and Growth Kinetics of Microcystis aeruginosa Cultured under Chemostats (연속배양에서 Microcystis aeruginosa의 질소 인 흡수와 생장 특성)

  • Lee, Ok-Hee;Cho, Kyung-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.119-130
    • /
    • 2006
  • As unialgal cultures to examine the growth kinetics of an algal species, Microcystis aeruginosa was grown in chemostats with nitrogen and phosphorus limitation. The nutrient concentrations of $NH_4\;^+\;and\;PO_4\;^{3-}$ to limit the growth of M, aeruginosa were approximately 200 ${\mu}M$ and 7 ${\mu}M$, respectively. Cell size of the algae decreased towards the $NH_4$-nitrogen limitation under a constant dilution rate, while it increased in the $PO_4$-limitaion. The cell quota of nitrogen under nitrogen-limited conditions was 6.1 ${\mu}mol$ mg $C^{-1}$ and, under nitrogen sufficient conditions, ranged from 9.5 ${\mu}mol$ mg $C^{-1}$ to 12.4 ${\mu}mol$ mg $C^{-1}$. In addition to the cell quota, the half-saturation constants for nitrogen uptake ($K_s$) and the growth rate (${\mu}_m$) was 36 ${\sim}$ 61 ${\mu}M$ and 0.28 ${\sim}$ 0.35 ${\mu}mol$ cell ${\cdot}$ $hr^{-1}$ to show high values in comparison with other algal species. As the limiting concentration, cell quota and uptake rate of M. aeruginosa were higher than those of any other species, the its nitrogen requirement would be great. In the other side, as the half saturation constant ($K_s$) for nitrogen uptake was higher, and the ratios ofmaximum uptake rate ($V_m$) and $K_s$ was relatively low, the species would have the low competitive ability in the low nitrogen concentration in the ambient water. However, the low concentration of nitrogen in the Nakdong River during the Microcystis outbreak would be the inevitable results of the algal blooms. In the lower Parts of the Nakdong River, the nutrient status was coupled with the growth kinetics of the blooming algae to have clear seasonal variations through a year.

Five-year monitoring of microbial ecosystem dynamics in the coastal waters of the Yeongheungdo island, Incheon, Korea (대한민국 인천 영흥도 인근 해역 미소생태계의 5년간의 군집구조 변화 모니터링)

  • Sae-Hee Kim;Jin Ho Kim;Yoon-Ho Kang;Bum Soo Park;Myung-Soo Han;Jae-Hyoung Joo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • In this study, changes in the microbial ecosystem of the Yeongheungdo island coastal waters were investigated for five years to collect basic data. To evaluate the influence of distance from the coast on the microbial ecosystem, four sites, coastal Site (S1) and 0.75, 1.5, and 3 km away from the coast, were set up and the changes in physicochemical and biological factors were monitored. The results showed seasonal changes in water temperature, dissolved oxygen, salinity, and pH but with no significant differences between sites. For nutrients, the concentration of dissolved inorganic nitrogen increased from 6.4 μM in April-June to 16.4 μM in July-November, while that of phosphorus and silicon phosphate increased from 0.4 μM and 2.5 μM in April-June to 1.1 μM and 12.0 μM in July-November, respectively. Notably, phosphorus phosphate concentrations were lower in 2014-2015 (up to 0.2 μM) compared to 2016-2018 (up to 2.2 μM), indicating phosphorus limitation during this period. However, there were no differences in nutrients with distance from the coast, indicating that there was no effect of distance on nutrients. Phytoplankton (average 511 cells mL-1) showed relatively high biomass (up to 3,370 cells mL-1) in 2014-2015 when phosphorus phosphate was limited. Notably, at that time, the concentration of dissolved organic carbon was not high, with concentrations ranging from 1.1-2.3 mg L-1. However, no significant differences in biological factors were observed between the sites. Although this study revealed that there was no disturbance of the ecosystem, further research and more basic data on the microecosystem are necessary to understand the ecosystem of the Incheon.

Changes of Epiphytic Algal Communities on Reed at the Shiwha Constructed Wetland in the Early Years of the Completion (시화인공습지 완공 초기에 갈대 부착조류 군집의 변화)

  • Kim, Han-Soon;Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.402-412
    • /
    • 2006
  • The Shihwa constructed wetland was established to treat the severely polluted water from Banwoul, Donghwa and Samhwa streams. This study was focused on investigating the dynamics of epiphytic algal communities on reed (Phragmites communis) planting area at 5 stations from October 2001 to June 2002. The concentration of total nitrogen and phosphorus of inlet stations from the streams were decreased after flowing through the wetland. However, the TN : TP ratios at all stations were slightly over 16 indicating that the total phosphorus may play some role as a limitation factor. Epiphytic algae on the reed were total 329 taxa which were composed of 295 species, 13 varieties, 3 forma and 18 unidentified species. The species numbers were recorded in the order of Chlorophyceae-Bacillariophyceae-Cyanophyceae-Euglenophyceae-Chrysophyceae. The relative percentage showed a seasonal variation from Cyanophyceae to Bacillariophyceae and to Chlorophyceae. The biomass of epiphytic algae measured by chlorophyll-a concentration ranged from 0.6 to $36.4\;{\mu}g\;cm^{-2}$. Dominant species were 16 taxa which were Lyngbya angusta of Cyanophyceae in the early investigation, and were changed to Stigeoclonium lubricum of Chlorophyceae, and Nitzschia palea of Bacillariophyceae etc. in the late. Species number, standing crops and chlorophyll-a concentrations of epiphytic algae showed higher values at the inlet stations than the stations after flowing through the wetland.

Short-term Nutrient Enrichment Bioassays (NEBs) by Manipulation of TN:TP Ratios and the Response of Primary Productivity (as Chlorophyll-a) (N:P Ratio 조절에 의한 단기 영양염 첨가 바이오에세이(NEBs) 및 1차 생산력(엽록소-a)의 반응성 테스트)

  • Jeong, Da-Bin;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2013
  • The objective of this study was to determine the effects of N:P ratio on primary productivity measured as chlorophyll-a (CHL) using the approach of In Situ Nutrient Enrichment Bioassays (NEBs) in Daechung Reservoir. The effects of NEBs on the N:P mass ratios were compared with the field data obtained from monthly-chemical monitoring during 2009~2012. The short-term NEBs showed that the response of primary productivity in the phosphorus spiked treatments (5, 15, 20 and 30 N:P ratios) were greater than the responses in the control (C) and nitrogen spiked treatment (N:P ratio=150, $T_{VI}$). The response in the nitrogen treatment (N:P ratio=150, $T_{VI}$) was less compared to control and all five treatments ($T_I{\sim}T_{VI}$). The outcomes of the NEBs suggest that phosphorus limited the phytoplankton growth and nitrogen addition inhibited the algal growth. In the analysis of nutrients and CHL from the ambient epilimnetic water in Daechung Reservoir, minimum N:P ratios resulted in maximum concentrations of CHL. Overall, our results suggest that the N:P ratio was the key factor in regulating the phytoplankton growth in NEB experiments.

Evaluating the Performance of APEX-Paddy Model using the Monitoring Data of Paddy Fields in Iksan, South Korea (국내 논필지 모니터링 자료를 이용한 APEX-Paddy 모델 적용성 평가)

  • Kamruzzaman, Mohammad;Cho, Jaepil;Choi, Soon-Kun;Song, Jung-Hun;Song, Inhong;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • The APEX model has been developed for assessing agricultural management efforts and their effects on soil and water at the field scale as well as more complex multi-subarea landscapes, whole farms, and watersheds. Recently, a key component of APEX application, named APEX-Paddy, has been modified for simulating water quality by considering paddy rice management practices. In this study, the performance of the APEX-Paddy model was evaluated using field data at Iksan experimental paddy sites in Korea. The discharge and pollutant load data during 2013 and 2014 were used to both manually and automatically calibrate the model. The APEX auto-calibration tool (APEX-CUTE 4.1) was used for model calibration and sensitivity analysis. Results indicate that APEX-Paddy reasonably performs in predicting runoff discharge rate and nitrogen yield. However, sediment and phosphorus yield is not correctly predicted due to the limitation of model schemes. With APEX-Paddy, the performance in reproducing the discharge and nitrogen yield is found to be a satisfactory level after manual calibration. The manually calibrated model performed better than the automatically calibrated model in nearly all comparisons. For runoff, manual calibration reduced PBIAS while R2 and NSE values of the automatically calibrated model were the same as the manual calibration. For T-N, NSE and PBIAS were reduced when using manual calibration, whereas R2 value was the same as manual calibration. The limitation of the APEX-Paddy model for predicting sediment, as well as the phosphorous yield, was discussed in this study.

Feasibility of Coal Combustion Ash on Acidity Regulation for Agricultural Use (석탄연소재의 산도조절을 통한 농업적 활용 가능성)

  • Oh, Sejin;Kang, Min Woo;Kim, Sung-Chul;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • BACKGROUND: Coal ashes generated from thermal power plants have been known as beneficial materials for agricultural use because of their nutrient elements. However, there is limitation to recycle them due to their alkalinity. The objective of this study was to evaluate the effectiveness or safety of the coal ashes for their heavy metals on agricultural recycling when adjusted to pH of 5 with sulfuric acid. METHODS AND RESULTS: Concentration of hydrogen which is needed to adjust pH of coal ash was estimated by using a buffering curve and then the amount of sulfuric acid was changed by the estimation before incubation. Each of fly ash (FA) and bottom ash (BA) was collected from both thermal plants of Yeongdong (YD) and Yeongheung (YH). The pH values of coal ashes increased to 4.76 (from 4.34) after incubation with sulfuric acid for 56 days, closer to the targeted pH. Coal ashes also increased the contents of available phosphorus by 2-fold (165 mg/kg) and 11-fold (1,137 mg/kg) for YDBA and YDFA, respectively, compared to the control. CONCLUSION: The utilization of coal ash with its acidity regulation would be very beneficial to agriculture sector and further suggest promising environmental safety against heavy metals.