• Title/Summary/Keyword: phosphorus flame retardant

Search Result 56, Processing Time 0.024 seconds

Performance Evaluation of Functional Oil Stain by Plywood Type (합판 종류에 따른 기능성 오일스테인의 성능 평가)

  • Lee, Ju-Won;Lee, Chang-Woo;Hwang, Woo-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.35-36
    • /
    • 2022
  • In order to supplement the flame-retardant performance of oil stain, which can prevent wooden buildings from contamination, (NH4)2HPO4, a phosphorus flame-retardant, was added to oil stain and applied for each type of plywood, and an experiment was conducted. The addition rate was set to 0-60%, but white powder appeared on the surface of plywood from 40% and thus it was impossible to experiment, so the maximum addition rate was selected as 30%. As a result of the experiment, acacia plywood had the best performance. As the rate of addition of the flame retardant increased, the remaining time and carbonization length of all plywood decreased, but the carbonization length of the MDF plywood was not met with the standards.

  • PDF

The Study on Enhance Flame Resistance of PASCON Prepared by Used Plastics (재생플라스틱을 이용한 파스콘 제품의 난연성 향상에 관한 연구)

  • Lee Chang-Woo;Kim Ji-Hwan;Hahm Young-Min;Chang Yoon-Ho
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.87-92
    • /
    • 2005
  • The PASCON of the flame resistance and the economic feasibility was prepared by non-halogenate flame retardant system. Prepared PASCON samples contained various flame retardants were subjected to flame tests(KS M 3015). We have studied that the effect of various flame retardants on the inflammability of PASCON and the effect of synergist on the flame resistance. As results, PASCON contained red-phosphorus as flame retardant exhibited excel lent flame retardancy. Also, the improvement of flame resistance is achieved by addition of 2.5phr synergist in the red-phosphorus(RP)/magnesium hydroxide(MH) system.

A Study on flame retardation effect Non halogen phosphorus (비 할로겐 인계 난연제에 대한 난연효과 연구)

  • Han, Jong-Il;Lee, Cheul-Kyu;Jung, Woo-Sung;Lee, Duck-Hee;Lee, Byung-Wook
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1789-1793
    • /
    • 2008
  • The Oxygen Index was measured for another flame retardant APP, or phosphorus, and other flame retarding assistants ZS, ZHS, AOM, and ZB, which are used as low smoke emitting materials, in order to see the increase in the flame retardation effect in comparison to the volume of additions. The results show that their flame retardation synergy effect was very small compared to the main flame retardants. The mixed use of main flame retardants, low smoking emitting materials, and phosphorus is a very important area of examination for creating synergy effect of flame retardation and lowering smoking and toxicity. For this, the results of flame retardation effect in comparison to the volume of addition of each low smoke emitting material are shown below.

  • PDF

Preparation of Reactive Flame Retardant Coatings Containing Phosphorus II. Preparation and Characterization of Polyurethane Coatings (반응형 인계 난연도료의 제조 II. 폴리우레탄 도료의 제조 및 도막특성)

  • Kim, Sung-Rae;Park, Hyong-Jin;Jung, Choong-Ho;Park, Hong-Soo;Im, Wan-Bin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • Two-component polyurethane flame retardant coatings (ATTBC) were prepared by blending polyisocyanate (TDI-adduct) with ATTBs mentioned at the previous paper. Most of the physical properties of the flame retardant coatings were comparable to those of non-flame retardant coatings. Especially, the hardness, impact resistance, and accelerated weathering resistance were remarkably improved with the increase of the content of 1,4-butanediol. Coatings containing 10 and 15 wt% 1,4-butanediol, ATTBC-10C and ATTBC-15C, were not flammable in vertical flame-retardancy test. Their char area recorded 1.1${\sim}$11.6 $cm^2$ in 45$^{\circ}$ eckel burner method.

Synthesis of Alkylphosphate-Thiourea Condensation Product and Its Application as Flame Retardant (알키포스페이트-티오우레아 축합물의 합성과 난연제로서의 응용)

  • Park, Hong-Soo;Kim, Young-Geun;Bae, Jang-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.31-36
    • /
    • 1990
  • Synthesizing octylphosphate(OTP) from phosphorus pentoxide with n-octyl alcohol, octylphosphatethiourea(OTPU) was prepared from OTP with thiourea. After flame retardant finishing OTPU to acrylic fabrics, nylon taffeta and tetron taffeta, the physical properties, such as tear strength and flame retardancy were measured. As the results of the measurement, OTPU was found to be a good flame retardant having softness using to synthetic fibers.

Synthesis and Analysis of Modified Polyesters Containing Phosphorus and Bromine for Flame-Retardant Coatings (난연도료용 인과 브롬 함유 변성폴리에스터의 합성 및 분석)

  • Park, Hong-Soo;Yoo, Gyu-Yeol;Kim, Ji-Hyun;Yang, In-Mo;Kim, Seung-Jin;Kim, Young-Geun;Jung, Choong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.319-331
    • /
    • 2007
  • The aim of this study is to enhance the flame retardancy by the synergism effect of phosphorus and bromine groups. The flame-retardant polyurethane coatings containing phosphorus and bromine compounds were synthesized. After synthesizing the intermediate products of tetramethylene bis(orthophosphate) (TBOP) and trimethylolpropane/2,3-dibromopropionic acid (2,3-DBP) [2,3-DBP-adduct], the condensation polymerization was performed with four different monomers of two intermediate products, 1,4-butanediol, and adipic acid to obtain four-components copolymer. In the condensation polymerization, the content of phosphorus was fixed to be 2wt%, and the content of 2,3-DBP that provides bromine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing phosphorus and bromine as DTBA-10C, -20C, -30C. Average molecular weight and polydispersity index of the preparation of DTBAs were decreased with increasing 2,3-DBP content because of increase of hydroxyl group that retards reaction. We found that the thermal stability of the prepared DTBAs increased with bromine content at high temperature.

Flame Retardancy of Novel Phosphorus Flame Retardant for Polyurethane Foam (새로운 인계 난연제가 연질폴리우레탄 폼의 난연성에 미치는 영향)

  • Kim, Chang Bum;Seo, Won Jin;Kwon, Oh Deok;Kim, Sang-Bum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.540-544
    • /
    • 2011
  • Novel phosphrous flame retardant tetramethylene bis(orthophosphorylurea) (TBPU) was synthesized by the reaction of diphosphoric acid with 1,4-butanediol and urea, and charaterized by Fourier transform infrared spectroscopy (FT-IR). As the amount of TBPU added in polyurethane foam (PUF) was increased, the flame retardancy of PUF was increased and the mechanical properties were not decreased. Also, in the flame resistance test after the reduced pressure storage, the flame retardancy of TBPU added PUF was retained. We could find out that the thermal resistance of TBPU added PUF increased compared to that of pure PUF.

Preparation and Physical Properties of PU Flame-Retardant Coatings Using Benzoic Acid Modified Polyester Containing Phosphorus and HDI-Trimer (인 함유 벤조산 변성폴리에스테르와 HDI-Trimer에 의한 PU 난연도료의 제조 및 도막물성)

  • Lee, Ae-Ri;You, Hyuk-Jae;Chung, Dong-Jin;Hahm, Hyun-Sik;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2004
  • PU flame-retardant coatings (APHD) containing phosphorous were prepared by blending of hexamethylene diisocyanate-trimer, white pigment, dispersing agent, flowing agent, and previously prepared benzoic acid modified polyester (APTB) that contains phosphorous. Physical properties of the prepared APHD were examined. With the introduction of BZA (contained in APTB), the film viscosity and film hardness of APHD decreased. With the introduction of caprolactone group, the flexibility, impact resistance, accelerated weathering resistance of APTBs increased. Flame retardancy of the coatings was tested. In a vertical burning method, APHD shows 210${\sim}$313 seconds, and in a $45^{\circ}$ Meckel burner method, shows 1.3${\sim}$4.0$cm^2$ of char length, which indicates that the coatings are good flame-retardant coatings. Moreover, the amount of afterglow and flame retardancy of the coatings are decreased with increasing BZA content.

Synthesis and Characterization of Non-halogen Type Phosphorus-Based Flame Retardants (비할로겐형 phosphate계 난연제의 합성 및 특성결정)

  • Han, Young Gyun;Min, Seong Kee;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.313-322
    • /
    • 2014
  • Among many types of flame retardants, the most available halogen-containing flame retardants were put under environmental restrictions in their use, so non-halogen type phosphorus-based flame retardants have come into the spotlight. When added to resins, flame retardants commonly bring about thermal degradation and decrease in mechanical properties of resins. Studies of new flame retardants were carried out in an attempt to minimize degradation of physical properties and require enough flame retardancy. In this study, three types of non-halogen phosphorus-based flame retardants were synthesized with diaryl alkyl phosphate esters, aromatic phosphate esters and phosphonium nitron flame retardants, which were then identified for the synthesis and thermal properties by gas chromatography (GC), IR and thermal gravimetric analysis (TGA).

Studies on Synthesis of N,N’-Bis(diphenyl phosphoro)diaminohexane and Flame Retardancy Effects of BDPDH on PET Fabrics. (N,N’-Bis(diphenyl phosphoro)diaminohexane의 합성과 PET 직물에 대한 방염성에 관한 연구)

  • Lee, Kwang-Woo;Heo, Man-Woo;Yoon, Jong-Ho;Lee, Chang-Sub;Cho, Yong-Seok;Kim, Sam-Soo;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.6 no.2
    • /
    • pp.55-62
    • /
    • 1994
  • The mend for fabric products has been increased remarkably with increasing population, housings, mutistory buildings,...and etc. during the last two decades. However, since fabrics are highly combustible and can produce toxic gases during the combution, fabric products can result in serious human injury as well as financial damage. Acknowledged by this, a new phosphorus based flame retardant suitable for PET fabric has been synthesized by making use of the reaction of diphenyl chloro phosphate and hexamethylenediamine. Since the starting meterials are relatively cheap and the yield of this reaction is high (more than 90%), this reaction seems to be very effective as wall as very economic. By analyzing various spectrophotometric analysis data such as NMR, FT-IR, and Mass, this new flame retardant is identified to be N,N’-Bis(diphenyl chlorophosphoro)diamino hexane. In the mean time, DSC measurement has shown that the melting point and the boiling point of this material are around 115$^{\circ}C$ and around 40$0^{\circ}C$, respectively. The flame retardancy test done on the PET fabric processed by this flame retardant have shown excellent in times of flame contact, times of flame contact for washable. The most economical finishing condition estimated 10% in concentration of BDPDH, Moreover, it has been also found that the drape stiffness of the PET fiber processed by the flame retartant is changed very litter compared to the unprocessed original PET fabrics. Judging from this, the potential of this new phosphrdus based compond as a flame retardant for PET fabric seems to be high.

  • PDF