• 제목/요약/키워드: phosphorus analysis

검색결과 819건 처리시간 0.032초

Magnetite for phosphorus removal in low concentration phosphorus-contained water body

  • Xiang, Heng;Liu, Chaoxiang;Pan, Ruiling;Han, Yun;Cao, Jing
    • Advances in environmental research
    • /
    • 제3권2호
    • /
    • pp.163-172
    • /
    • 2014
  • Magnetite was chosen as a typical adsorbent to study its phosphate adsorption capacity in water body with low concentration of phosphorus (below $2mg\;PL^{-1}$). Magnetite was collected from Luoyang City, Henan Province, China. In this research, three factors have been studied to describe the adsorption of phosphate on magnetite, which was solution concentration (concentration ranging from 0.1 to $2.5mg\;PL^{-1}$), suspension pH (1 to 13) and temperature (ranging from $10^{\circ}C$ to $40^{\circ}C$). In addition, the modified samples had been characterized with XRD and FE-SEM image. The results show that iron ions contains in magnetite were the main factors of phosphorus removal. The behavior of phosphorus adsorption to substrates could be fitted to both Langmuir and Freundlich isothermal adsorption equations in the low concentration phosphorus water. The theoretical saturated adsorption quantity of magnetite is 0.158 mg/g. pH has great influence on the phosphorus removal of magnetite ore by adsorption. And pH of 3 can receive the best results. While temperature has little effect on it. Magnetite was greatly effective for phosphorus removal in the column experiments, which is a more practical reflection of phosphorous removal combing the adsorption isotherm model and the breakthrough curves. According to the analysis of heavy metals release, the release of heavy metals was very low, they didn't produce the secondary pollution. The mechanism of uptake phosphate is in virtue of chemisorption between phosphate and ferric ion released by magnetite oxidation. The combined investigation of the magnetite showed that it was better substrate for water body with low concentration of phosphorus.

EVALUATION OF RAPID DETERMINATION OF PHOSPHORUS IN SOILS BY NIR SPECTROSCOPY

  • Ryu, Kwan-Shig;Kim, Book-Jin;Park, Jin-Sook
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1072-1072
    • /
    • 2001
  • The purpose of this research is to evaluate rapid determination of phosphorus in soils using NIR spectroscopy. The soil samples from the fields subject to different crops and land-use in Kyeongbook province, Korea were used to make the calibration and validation of the calibration set estimating phosphorus in soil. The NIR reflectance was scanned at 2nm intervals from 1100 to 2500nm with an InfraAlyzer 500 (Bran+Luebbe Co.). Various regression analyses were used to evaluate a NIRS method for determination of phosphorus in the soil. NIR absorption approach requires many soil samples to obtain optimal prediction. Applicability of NIR spectra technique may allow for the analysis of available soil phosphorus rapidly as well as total component within a few seconds.

  • PDF

생물학적 질소.인 동시제거 시스템에서 탈질미생물의 인 제거 가능성 (Possibility of Anoxic Phosphorus Removal by Denitrifier in Denitrifying EBPR System)

  • 이한샘;윤주환
    • 한국물환경학회지
    • /
    • 제29권6호
    • /
    • pp.782-789
    • /
    • 2013
  • Enhanced biological phosphorus removal (EBPR) behavior and microbial characteristics in the anaerobic-aerobic SBR (PAO SBR) and the anaerobic-anoxic SBR (DPAO SBR) were examined in this research. For 392 days of operation, both SBRs have exhibited a good EBPR (or denitrifying EBPR) performance. $P_{release}/P_{influent}$ ratio was highest in both reactors after the stabilization, while the efficiency of phosphorus removal was decreased since the sludge granulation has been visually observed within the reactor. The comparative analysis of Pyrosequencing-based microbial population between PAO and DPAO sludges showed indirectly that Dechloromonas spp. could utilize $O_2$ and $NO_3{^-}-N$ as an electron acceptor and Accumulibacter phosphatis use only $O_2$ in EBPR system. Also, we concluded that Thauera spp. as a denitrifier contribute significantly to the anoxic phosphorus removal in the DPAO system.

농업용 저수지의 수질항목간의 상관관계 조사 (Study on the Relationships among Water Quality Parameters in Agricultural Reservoirs)

  • 전지홍;함종화;윤춘경;황순진;김호일
    • 한국농공학회지
    • /
    • 제44권3호
    • /
    • pp.136-145
    • /
    • 2002
  • Monitoring data from agricultural reservoirs throughout the country were analyzed to evaluate the limiting factor fur algal growth and relationships between Chl-a, total phosphorus (TP), and total nitrogen (TN). Total 394 reservoirs ranging from below 500 ㎥ to over 50 million ㎥ in storage volume were monitored from 1990 to 2000 with respect to TP, W, Chl-a, and their annual mean values were used fur the analysis. Based on N/P ratio, the dominant limiting factor for algal growth was turned out to be phosphorus in agricultural reservoirs (about 83%). Therefore, the proper managements of phosphorus in the agricultural watershed appear to be crucial to prevent excessive on algal growth. The effects of phosphorus and nitrogen ware most eminent during the summer period. And the effect of nutrients on the algal biomass (Chl-a) development appeared to be greater in smaller the reservoirs than in larger ones. Generally, Chl-a and TP demonstrated a close relationship while that of Chl-a and TN showed less correlationship. Chl-a and chemical oxygen demand (COD) also showed a good relationship. Beth ratios of Chl-a / TP and Chl-a / COD relationships were within the range of literature values. Quantitative analysis of TP and COD is relatively convenient compared to that of Chl-a, and the relationship between TP and COD and Chl-a from this study could be used beneficially for water quality management of agricultural reservoirs and related water quality modeling.

Establishment of Phosphorus Flow Model in Urban Area using Material Flow Analysis

  • Lee, Mina;Kim, Kye-Hoon
    • 한국토양비료학회지
    • /
    • 제47권2호
    • /
    • pp.80-84
    • /
    • 2014
  • Phosphorus (P) is an essential nutrient for all living organisms. P is mostly obtained from mined rock phosphate. However, existing rock phosphate reserves could be exhausted in the next 50-100 years. As Korea is totally dependent on imported rock phosphate, we should seek for solution to overcome the P depletion by efficient use and recycling. For this, this study suggested a P flow model to identify the location and flow route of P in urban area based on traditional material flow analysis. The type of P entering the urban areas are fertilizer, food and feed. Each type of P is used in agriculture, human consumption and animal husbandry. After going through each process, P is moved to waste management facilities within food waste, excreta and sewage. Some portion of P in waste are buried, incinerated and discharged, which can be reservoir of P in the future.

Synthesis, Spectral Characterization, Electron Microscopic Study and Influence on the Thermal Stability of Phosphorus-containing Dendrimer with a 4,4'-Sulphonyldiphenol at the Core

  • Dadapeer, Echchukattula;Rasheed, Syed;Raju, Chamarthi Naga
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.498-502
    • /
    • 2011
  • The divergent synthesis of novel phosphorus-containing dendrimer with 4,4'-sulphonyldiphenol at the core has been accomplished involving simple condensation reactions using $P(O)Cl_3$, $P(S)Cl_3$, 3-amino-phenol, 3-hydroxy-benzaldehyde, and 2-butyn 1, 4-diol. The final compound was a Schiff's base macromolecule possessing 4 imine bonds, 8 acetylenic bonds and 8 OH groups at the periphery. The structures of intermediate compounds were confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), LC-Mass and C, H, N analysis. The structure of the final dendrimer (5) was confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), MALDI-TOF-MS, and C, H, N analysis. The surface morphological characteristics of the final dendrimer were understood by Scanning Electronic Microscopic study (SEM). The thermal stability of the final dendrimer was studied by TGA/DTA analysis.

모래 캡핑 두께가 퇴적물 인 용출에 미치는 영향 (Impact of Thickness of Sand Capping on Phosphorus Release Rate from Sediment)

  • 정우혁;김건하
    • 생태와환경
    • /
    • 제39권3호통권117호
    • /
    • pp.331-339
    • /
    • 2006
  • 본 연구는 퇴적물의 인 용출을 제어하기 위한 방법으로 모래를 이용한 캡핑을 포설할 경우 두께에 따른 인 용출율 저감 효과를 파악하기 위하여 수행되었다. 캡핑은 퇴적물의 인이 수체로 용출되는 속도를 저감시키며, 미생물의 기질소모 이하로 그 속도를 낮추면 수체내의 인의 농도를 일정하게 유지할 수 있음을 알 수 있었다. 모래캡핑의 두께와 용출저감은 선형의 상관관계를 보이며 캡핑 두께가 40 mm에서 80 mm로 두꺼울수록 탈산소계수가 0.311 $day^{-1}$에서 0.262 $day^{-1}$으로 작아지고 있으며, 두께가 증가함에 따라 재폭기 계수는 0.013 $day^{-1}$에서 0.0240 $day^{-1}$으로 커지는 것으로 나타났다. 회귀분석한 결과에 의하면 최소한 20${\sim}$40 mm의 모래캡핑을 실시하더라도 인 용출량을 효율적으로 저감 시킬 수 있는 것으로 나타났다.

탄산칼슘 담체를 이용한 폐수내의 인 제거 (Phosphorus Removal from Wastewater by CaCO3 Media)

  • 김문기;박재홍;이광현;주현종
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.515-521
    • /
    • 2009
  • In this study, the applicability of $CaCO_3$ as a seed material for crystallization reaction was tested. $CaCO_3$ was ground to lesser than 425 mesh and was made to media mixed with binder. Batch experiment was to investigate the ${PO_4}^{3-}-P$ removal efficiency of different parameters such as $CaCO_3$ dosage and binder ratio, size, type and mass of media. In addition, the effect of phosphorus removal from wastewater was tested using a lab-scaled crystallization reactor. At the results of the batch test, phosphorus removals were improved with increasing $CaCO_3$ dosage and media mass but were decreased with increasing media size. Moreover, phosphorus removals were influenced by specific surface area but media type. The average T-P and ${PO_4}^{3-}-P$ removal efficiency in a lab-scaled crystallization reactor with $CaCO_3$ media for wastewater were shown to be 60.2% and 60.3% for 18 days of operation time.

The Identification of Limiting Nutrients Using Algal Bioassay Experiments (ABEs) in Boryeong Reservoir after the Construction of Water Tunnel

  • Ku, Yeonah;Lim, Byung Jin;Yoon, Jo-Hee;Lee, Sang-Jae;An, Kwang-Guk
    • 환경생물
    • /
    • 제36권4호
    • /
    • pp.558-566
    • /
    • 2018
  • The objective of the study was to determine nutrition regime and limitation in the Boryeng Reservoir where there's a water tunnel between Geum River and the reservoir. Evaluation was conducted through in situ algal bioassay experiments (in situ ABEs) using the cubitainer setting in the reservoirs. For in situ ABEs, we compared and analyzed variations in chlorophyll-a (CHL-a) and phosphorus concentrations in Boryeong Reservoir before and after the water tunnel construction. We then analyzed the nutrient effects on the reservoir. Analysis for nitrogen and phosphorus was done in the three locations of the reservoir and two locations of the ABEs. The in situ ABEs results showed that phosphorous and Nitrogen, the primary limiting nutrient regulating the algal biomass was not limited in the system. The treatments of phosphorus or simultaneous treatments of N+P showed greater algal growth than in the control of nitrate-treatments, indicating a phosphorus deficiency on the phytoplankton growth in the system. The water from the Geum River had 5 times higher total phosphorus (TP) than the water in the reservoir. Efficient management is required as pumping of the river water from Geum River may accelerate the eutrophication of the reservoir.

폴리사이드 형성 조건에 따른 WS $i_{x}$ 박막 특성에 관한 연구 (A Study on the Properties of WS $i_{x}$ Thin Film with Formation Conditions of Polycide)

  • 정양희;강성준;김경원
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권9호
    • /
    • pp.371-377
    • /
    • 2003
  • We perform the physical analysis such that Si/W composition ratios and phosphorus distribution change in the W/S $i_{x}$ thin films according to phosphorus concentration of polysilicon and W $F_{6}$ flow rate for the formation of WS $i_{x}$ polycide used as a gate electrode. We report that these physical characteristics have effects on the contact resistance between word line and bit line in DRAM devices. RBS measurements show that for the samples having phosphorus concentrations of 4.75 and 6.0${\times}$10$^{2-}$ atoms/㎤ in polysilicon, by applying W $F_{6}$ flow rates decreases from 4.5 to 3.5 sccm, Si/W composition ratio has increases to 2.05∼2.24 and 2.01∼2.19, respectively. SIMS analysis give that phosphorus concentration of polysilicon for both samples have decreases after annealing, but phosphorus concentration of WS $i_{x}$ thin film has increases by applying W $F_{6}$ flow rates decreases from 4.5 to 3.5 sccm. The contact resistance between word line and bit line in the sample with phosphorus concentration of 6.0 ${\times}$ 10$^{20}$ atoms/㎤ in polysilicon is lower than the sample with 4.75 ${\times}$ 10$^{20}$ atoms/㎤ After applying W $F_{6}$ flow rates decreases from 4.5 to 3.5 sccm, the contact resistance has been improved dramatically from 10.1 to 2.3 $\mu$ $\Omega$-$\textrm{cm}^2$.