• Title/Summary/Keyword: phosphomolybdic acid

Search Result 14, Processing Time 0.02 seconds

Studies on the Constituents of Korean Edible Oils and Fats - Part 6 : A Study on the Natural Antioxidants of sesame and perilla seeds - (한국산 식물식용유지의 성분에 관한 연구 - 제 6 보 : 참깨와 들깨종자유 중의 천연산화방지제에 관한 연구 -)

  • Hwang, Sung-Za;Ko, Young-Soo
    • Journal of Nutrition and Health
    • /
    • v.15 no.1
    • /
    • pp.30-38
    • /
    • 1982
  • Experiments were carried out in order to compare the natural antioxidants in the acetonitril extracts of raw and baked seeds of Korean sesame and perilla by thin layer and gas chromatography. The sample was dissolved in n-pentane and extracted with acetonitril and the acetonitril extract was separated by thin layer chromatography using silica gel. The spots were detected by spraying with 2, 6 -dichloroquinone -4-chlorimide, phosphomolybdic acid and dimethylamine as chromogenic reagents. Natural antioxidant, such as ${\delta}-tocopherol$ detected in raw and baked sesame and perilla seed oil by TLC and sesamol was detected only in raw and baked sesame seed oil by GC.

  • PDF

Aluminium Salt of Phosphomolybdic Acid Fabricated by Nanocasting Strategy: An Efficient System for Selective Oxidation of Benzyl Alcohols

  • Aliyan, Hamid;Fazaeli, Razieh;Habibollahi, Nasibeh
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.591-596
    • /
    • 2012
  • Preparation of $AlPMo_{12}O_{40}$ (AlPMo) salts, supported on mesostructured SBA-15 silica, by the reaction deposition strategy causes the formation of isolated AlPMo nanocrystals inside the nanotubular channels. The remarkable characteristic of the SBA-15 structure is that all the cylindrical pores are connected by some small channels. This makes the whole pore system in SBA-15 three-dimensional. We have used 2D hexagonal SBA-15 silicas as hard templates for the nanofabrication of AlPMo salt nanocrystal. The oxidation of alcohols occurs effectively and selectively with $H_2O_2$ as the oxidant. AlPMo salt nanocrystal was used as the catalyst.

Development of a Coupled Enzyme Assay Method for Microsomal Prostaglandin E Synthase Activity

  • Choi, Kyung-A;Park, Sung-Jun;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.384-388
    • /
    • 2010
  • Human microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the conversion of prostaglandin $H_2$ ($PGH_2$) into prostaglandin $E_2$ ($PGE_2$). To establish a stable and efficient method to assess the activity of mPGES-1, a coupled enzyme assay system using mPGES-1, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and phosphomolybdic acid (PMA) was developed. In this assay system, $PGH_2$ was converted to $PGE_2$ by mPGES-1, and then $PGE_2$ was further transformed to the 15-keto-$PGE_2$ by 15-PGDH accompanying the production of NADH, which was easily detected by fluorescence spectrometry in a multi-well plate format. During the reaction, spontaneous oxidation of $PGH_2$ was prevented by PMA. Using this novel assay, the $K_m$ value of mPGES-1 for $PGH_2$ and the $IC_{50}$ value of the previously characterized inhibitor, MK-886, were determined to be 0.150 mM and $2.8\;{\mu}M$, respectively, which were consistent with the previously reported values. In addition, low backgrounds were observed in the multi-wall plate screening of chemical compounds.

Preparation of Composite Nafion/polyphenylene Oxide(PPO) with Hetropoly Acid(HPA) Membranes for Direct Methanol Fuel Cells (헤테로폴리산을 포함한 직접 메탄올 연료전지용 나피온/폴리페닐렌옥사이드 복합막의 제조)

  • Kim, Donghyun;Sauk, Junho;Kim, Hwayong;Lee, Kab Soo;Sung, Joon Yong
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.187-192
    • /
    • 2006
  • The preparation and characterization of new polymer composite membranes containing polyphenylene oxide (PPO) thin films with hetropoly acid (HPA) are presented. PPO thin films with phosphotungstic acid (PWA) or phosphomolybdic acid (PMA) have been prepared by using the solvent mixture. The PWA and PPO can be blended using the solvent mixture, because PPO and PWA are not soluble in the same solvent. In this study, methanol was used as a solvent dissolving PWA and chloroform was used as a solvent dissolving PPO. PPO-PWA solutions were cast onto a glass plate with uniform thickness. The composite membranes were prepared by casting Nafion mixture on porous PPO-PWA films. The morphology and structure of these PPO-PWA films were observed with scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The composite membranes were characterized by measuring their ion conductivity and methanol permeability. The performance was evaluated with composite membranes as electrolytes in fuel cell conditions. The methanol cross-over of composite membranes containing PPO-PWA barrier films in the DMFC reduced by 66%.