• Title/Summary/Keyword: phosphate solubilization

Search Result 112, Processing Time 0.023 seconds

Expression of pqq Genes from Serratia marcescens W1 in Escherichia coli Inhibits the Growth of Phytopathogenic Fungi

  • Kim, Yong-Hwan;Kim, Chul-Hong;Han, Song-Hee;Kang, Beom-Ryong;Cho, Song-Mi;Lee, Myung-Chul;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.323-328
    • /
    • 2006
  • Serratia marcescens W1, isolated from cucumber-cultivated soil in Suwon, Korea, evidenced profound antifungal activity and produced the extracellular hydrolytic enzymes, chitinase and protease. In order to isolate the antifungal genes from S. marcescens W1, a cosmid genomic library was constructed and expressed in Escherichia coli. Transformants exhibiting chitinase and protease expression were selected, as well as those transformants evidencing antifungal effects against the rice blast fungus, Magnaporthe grisea, and the cucumber leaf spot fungus, Cercospora citrullina. Cosmid clones expressing chitinase or protease exerted no inhibitory effects against the growth of fungal pathogens. However, two cosmid clones evidencing profound antifungal activities were selected for further characterization. An 8.2 kb HindIII fragment from these clones conditioned the expression of antagonistic activity, and harbored seven predicted complete open reading frames(ORFs) and two incomplete ORFs. The deduced amino acid sequences indicated that six ORFs were highly homologous with genes from S. marcescens generating pyrroloquinoline quinone(PQQ). Only subclones harboring the full set of pqq genes were shown to solubilize insoluble phosphate and inhibit fungal pathogen growth. The results of this study indicate that the functional expression of the pqq genes of S. marcescens W1 in E. coli may be involved in antifungal activity, via as-yet unknown mechanisms.

Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

  • Etminani, Faegheh;Harighi, Behrouz
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.208-217
    • /
    • 2018
  • In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

Phosphate solubilizing effect by two Burkholderia bacteria isolated from button mushroom bed (양송이배지로부터 분리한 두 Burkholderia 속 세균에 의한 인산가용화 효과)

  • Oh, Jong-Hoon;Kim, Young-Jun;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.208-213
    • /
    • 2020
  • Burkholderia contaminans PSB-A and Burkholderia ambifaria PSB-B were isolated from button mushroom bed to estimate their phosphate solubility. The phosphate-solubilizing abilities of these strains were assessed by measuring the phosphorus content in a single and co-inoculation medium for 7 days. The co-inoculation of these two strains released the highest content of soluble phosphorus (166.3 ㎍ mL-1) into the medium, followed by single inoculation of B. contaminans PSB-A (143.73 ㎍ mL-1) and B. ambifaria PSB-B (127.1 ㎍ mL-1). The highest pH reduction, organic acid production, and glucose consumption were also observed in the co-inoculation medium. According to the plant growth promotion bioassay, co-inoculation enhanced the growth of romaine lettuce much more than the single inoculation (20.4% for leaf widths and 16.6% for root lengths). Although no significant difference was noted between single and co-inoculation of bacterial strains in terms of phosphorous release and plant growth, co-inoculation of PSB may have a beneficial effect on crop growth due to a synergistic effect between the strains.

Optimization of Indole-3-Acetic production by phosphate solubilization bacteria isolated from waste mushroom bed of Agaricus bisporus

  • Walpola, Buddhi Charana;Noh, Jae-Geun;Kim, Chan Kyem;Kyung, Ki-Cheon;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.11 no.2
    • /
    • pp.53-62
    • /
    • 2013
  • A total of 35 phosphate solubilizing bacterial strains were isolated from waste mushroom bed of Agaricus bisporus in Buyeo-Gun, Chungnam and screened for the production of indole acetic acid (IAA). The best IAA producing strain was identified as Pantoea rodasii using 16S rRNA analysis. In addition to the IAA production, this strain could act as an efficient phosphate solubilizer (1100 ${\mu}g$ $ml^{-1}$ after 5 days of incubation) also. The selected strain was cultured under different conditions in order to assess the optimum conditions for maximum IAA production. The nutrient broth (NB) medium was recorded as the best medium, where the maximum IAA production (229 ${\mu}g$ $ml^{-1}$) was recorded at the start of stationary phase (12 hours after inoculation) of the bacteria growth. The performance of the strain was found to be maximum at the temperature of $30^{\circ}C$ followed by $25^{\circ}C$. IAA production was found to be increased with increasing tryptophan concentration (from 0.1 to 0.6%), however beyond this limit, a slight reduction in IAA production was observed. The strains' ability to produce IAA was further confirmed by extraction of crude IAA and subsequent TLC analysis. A specific spot from the extracted IAA preparation was found corresponding with the standard spot of IAA with same $R_f$ value. The results of HPLC analysis conducted in identifying and quantifying the IAA production more precisely, are in agreement with the results of the assessment done with colorimetric method. As revealed by the results of the pot experiment, the isolated strain could significantly enhance the growth (as measured by shoot and root growth) of mung bean plants compared to that of non-inoculated plants. Therefore it can be concluded that the present strain, Pantoea rodasii has great potential to be used as bio-inoculants.

Phosphate solubilizing effect by two paraburkholderia bacteria Isolated from button mushroom medium (양송이배지로부터 분리한 두 Paraburkholderia 속 세균에 의한 인산가용화 효과)

  • Yu, Hye-Jin;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.17 no.2
    • /
    • pp.64-69
    • /
    • 2019
  • The present study was conducted to investigate the synergistic effects caused by single and co-inoculation of the phosphate solubilizing bacteria (PSB), Paraburkholderia phenazinium YH3 and Paraburkholderia metrosideri YH4. Phosphate solubilization was assessed by measuring the phosphorus contents for 7 days in a single and co-inoculation medium. Co-inoculation of the two strains was found to release the highest content of soluble phosphorus ($1,250{\mu}g\;mL^{-1}$) into the medium, followed by the single inoculation of P. metrosideri YH4 ($1196.59{\mu}g\;mL^{-1}$) and P. phenazinium YH3 ($994.34{\mu}g\;mL^{-1}$). The highest pH reduction, organic acid production and glucose consumption was also observed in the co-inoculation medium of the two strains. A plant growth promotion bioassay revealed that co-inoculation with the two strains enhanced the growth of romaine lettuce more than single inoculation with either of the two strains (28.5% for leaf and 16.6% for root). Although there was no significant difference between single and co-inoculation of bacterial strains in terms of phosphorous release and plant growth, the synergistic effects of co-inoculation with PSB could be beneficial for crop growth.

Beneficial Effects of Fluorescent Pseudomonads on Seed Germination, Growth Promotion, and Suppression of Charcoal Rot in Groundnut (Arachis hypogea L.)

  • Shweta, Bhatia;Maheshwari, Dinesh Kumar;Dubey, Ramesh Chand;Arora, Daljit Singh;Bajpai, Vivek K.;Kang, Sun-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1578-1583
    • /
    • 2008
  • Rhizobacteria are used as inoculants to enhance crop yield and for biological control of fungal pathogens. Fluorescent pseudomonads isolated from the rhizosphere of groundnut showed suppression of the phytopathogen Macrophomina phaseolina that causes charcoal rot of groundnut, an economically important agroproduct. Two strains of fluorescent pseudomonads, designated as PS1 and PS2, were selected as a result of in vitro antifungal activity. After 5 days of incubation at $28{\pm}1^{\circ}C$, both PS1 and PS2 caused clear inhibition zones in dual cultures, restricting the growth of M. phaseolina by 71 % and 74%, respectively. Both the strains were capable of producing siderophores, indole acetic acid, and hydrocyanic acid, and causing phosphate solubilization under normal growth conditions. These strains, when used as inoculants in groundnut, enhanced germination up to 15% and 30% with subsequent increase in grain yield by 66% and 77%, respectively. Conversely, when the pathogen alone was tested 57% decrease in yield was recorded. Thus the studies revealed the potential of the two pseudomonads not only as biocontrol agents against M. phaseolina, but also as a good growth promoter for groundnut.

Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils

  • Shagol, Charlotte C.;Chauhan, Puneet S.;Kim, Ki-Yoon;Lee, Sun-Mi;Chung, Jong-Bae;Park, Kee-Woong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.58-66
    • /
    • 2011
  • Arsenic pollution is a serious global concern which affects all life forms. Being a toxic metalloid, the continued search for appropriate technologies for its remediation is needed. Phytoremediation, the use of green plants, is not only a low cost but also an environmentally friendly approach for metal uptake and stabilization. However, its application is limited by slow plant growth which is further aggravated by the phytotoxic effect of the pollutant. Attempts to address these constraints were done by exploiting plant-microbe interactions which offers more advantages for phytoremediation. Several bacterial mechanisms that can increase the efficiency of phytoremediation of As are nitrogen fixation, phosphate solubilization, siderophore production, ACC deaminase activity and growth regulator production. Many have been reported for other metals, but few for arsenic. This mini-review attempts to present what has been done so far in exploring plants and their rhizosphere microbiota and some genetic manipulations to increase the efficiency of arsenic soil phytoremediation.

Genotypic and Phenotypic Diversity of PGPR Fluorescent Pseudomonads Isolated from the Rhizosphere of Sugarcane (Saccharum officinarum L.)

  • Rameshkumar, Neelamegam;Ayyadurai, Niraikulam;Kayalvizhi, Nagarajan;Gunasekaran, Paramsamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.13-24
    • /
    • 2012
  • The genetic diversity of plant growth-promoting rhizobacterial (PGPR) fluorescent pseudomonads associated with the sugarcane (Saccharum officinarum L.) rhizosphere was analyzed. Selected isolates were screened for plant growthpromoting properties including production of indole acetic acid, phosphate solubilization, denitrification ability, and production of antifungal metabolites. Furthermore, 16S rDNA sequence analysis was performed to identify and differentiate these isolates. Based on 16S rDNA sequence similarity, the isolates were designated as Pseudomonas plecoglossicida, P. fluorescens, P. libaniensis, and P. aeruginosa. Differentiation of isolates belonging to the same group was achieved through different genomic DNA fingerprinting techniques, including randomly amplified polymorphic DNA (RAPD), amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic (REP), enterobacterial repetitive intergenic consensus (ERIC), and bacterial repetitive BOX elements (BOX) analyses. The genetic diversity observed among the isolates and rep-PCR-generated fingerprinting patterns revealed that PGPR fluorescent pseudomonads are associated with the rhizosphere of sugarcane and that P. plecoglossicida is a dominant species. The knowledge obtained herein regarding the genetic and functional diversity of fluorescent pseudomonads associated with the sugarcane rhizosphere is useful for understanding their ecological role and potential utilization in sustainable agriculture.

Studies on the Calcium Phosphopeptide in Milk Casein (우유 Casein 중의 Calcium Phosphopeptide에 관한 연구)

  • 이수원;황보식;양희진;남명수;유제현;정충일
    • Food Science of Animal Resources
    • /
    • v.22 no.1
    • /
    • pp.55-58
    • /
    • 2002
  • The economical producing method of casein phosphopeptide (CPP) and the physicochemical properties related to the solubilization of calcium were studied. Firstly, The compositions of the purified CPP-III were 13.1% of nitrogen, 2.3∼2.4% of phosphate and the ratio of N/P was 5.4∼5.6. In consideration of economic aspects, the preparation method of the CPP- I and II which were lower purity than the CPP-III was established. The physico-chemical property of the CPP was compared with the enzymically dephosphorylated CPP. CPP and polyglutamate effectively inhibited the formation of insoluble calcium phosphates at physiological pH.

Practical significance of plant growth-promoting rhizobacteria in sustainable agriculture: a review

  • Subhashini Wijeysingha;Buddhi C. Walpola;Yun-Gu Kang;Min-Ho Yoon;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.759-771
    • /
    • 2023
  • Plant growth-promoting rhizobacteria (PGPR) are naturally occurring bacteria that intensively colonize plant roots and are crucial in promoting the crop growth. These beneficial microorganisms have garnered considerable attention as potential bio-inoculants for sustainable agriculture. PGPR directly interacts with plants by providing essential nutrients through nitrogen fixation and phosphate solubilization and accelerating the accessibility of other trace elements such as Cu, Zn, and Fe. Additionally, they produce plant growth-promoting phytohormones, such as indole acetic acids (IAA), indole butyric acids (IBA), gibberellins, and cytokinins.PGPR interacts with plants indirectly by protecting them from diseases and infections by producing antibiotics, siderophores, hydrogen cyanide, and fungal cell wall-degrading enzymes such as glucanases, chitinases, and proteases. Furthermore, PGPR protects plants against abiotic stresses such as drought and salinity by producing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and modulating plant stress markers. Bacteria belonging to genera such as Bacillus, Pseudomonas, Burkholderia, Pantoa, and Enterobacter exhibit multiple plant growth-promoting traits, that can enhance plant growth directly, indirectly, or through synergetic effects. This comprehensive review emphasizes how PGPR influences plant growth promotion and presents promising prospects for its application in sustainable agriculture.