We present a statistical analysis of Korean phonological variations using automatic generation of phonetic transcription. We have constructed the automatic generation system of Korean pronunciation variants by applying rules modeling obligatory and optional phonemic changes and allophonic changes. These rules are derived from knowledge-based morphophonological analysis and government standard pronunciation rules. This system is optimized for continuous speech recognition by generating phonetic transcriptions for training and constructing a pronunciation dictionary for recognition. In this paper, we describe Korean phonological variations by analyzing the statistics of phonemic change rule applications for the 60,000 sentences in the Samsung PBS(Phonetic Balanced Sentence) Speech DB. Our results show that the most frequently happening obligatory phonemic variations are in the order of liaison, tensification, aspirationalization, and nasalization of obstruent, and that the most frequently happening optional phonemic variations are in the order of initial consonant h-deletion, insertion of final consonant with the same place of articulation as the next consonants, and deletion of final consonant with the same place of articulation as the next consonants. These statistics can be used for improving the performance of speech recognition systems.
This study examined how well Korean undergraduate students perceived linked or clear English speech and attempted to find areas of difficulty in their English listening caused by phonological variations. Thirty nine undergraduate students participated in listening sessions. They were divided into high and low groups by their TOEIC listening scores. Samples of linked speech included such phonological processes as linking, palatalization, flapping, and deletion. Results showed that the students had more problem perceiving linked speech than perceiving clear speech. Secondly, both the higher and the lower groups scored low on the linked speech. The lower group had more score difference between linked and clear speech. Thirdly, the students' scores increased from the speech with flapping, through deletion, palatalization, to linking. Finally, there was a strong positive correlation between their TOEIC listening scores and the perception scores. Further studies would be desirable on the level of improvement of TOEIC scores by training the students' listening ability using the linked speech.
In this paper, we describe a cross-morpheme pronunciation variation model which is especially useful for constructing morpheme-based pronunciation lexicon to improve the performance of a Korean LVCSR. There are a lot of pronunciation variations occurring at morpheme boundaries in continuous speech. Since phonemic context together with morphological category and morpheme boundary information affect Korean pronunciation variations, we have distinguished phonological rules that can be applied to phonemes in within-morpheme and cross-morpheme. The results of 33K-morpheme Korean CSR experiments show that an absolute reduction of 1.45% in WER from the baseline performance of 18.42% WER was achieved by modeling proposed pronunciation variations with a possible multiple context-dependent pronunciation lexicon.
본 논문에서는 한국어 발음열 자동 생성기를 이용하여 한국어의 음운 규칙에 대한 통계적 분석을 수행하였다. 실험에 사용한 발음열 자동 생성기는 한국어 음운 변화 현상에 대해 형태음운론에 기반 한 언어학적 분석과 문교부 표준어 규정의 표준 발음법에서 유도된 필수 및 수의적 음소 변동 규칙과 변이음 규칙의 단계적 적용 모델을 사용해서 구현되었으며, 특히 연속음성 인식을 위한 학습용 발음열과 인식용 발음사전 생성의 최적화를 목표로 하였다. 본 논문에서는 대어휘 연속음성 인식기의 음향 모델을 구축하기 위해 만들어진 삼성 PBS(Phonetically Balanced Sentence) 음성 데이터 베이스의 60,000문장에 적용된 발음열 생성기의 음소 변동규칙들의 분포 및 그 통계를 사용해서 한국어 음운 변화 양상을 분석하였다. 적용된 빈도수를 기준으로 분석한 결과, 필수음소 변동규칙의 경우는 연음법칙, 경음화, 격음화, 장애음의 비음화순으로, 수의적 음소 변동규칙의 경우는 초성 ㅎ 탈락, 중복 자음화, 동일 조음위치 자음탈락 순으로 음운 변화가 발생하였다. 이러한 적용 규칙들의 통계적 자료를 기반으로 한국어 음운 변화 양상을 파악할 수 있었으며, 나아가 본 논문의 연구 결과는 음성 인식 시스템을 개발하는데 유용하게 사용할 수 있을 것이다.
음성 인식이나 음성 합성시 필요한 발음열을 수작업으로 작성할 경우 작성자의 음운변화 현상에 대한 전문적 언어지식을 비롯하여 많은 시간과 노력이 요구되며 일관성을 유지하기도 쉽지 않다. 또한 한국어의 음운 변화 현상은 단일 형태소의 내부와 복합어에서 결합된 형태소의 경계점, 여러 형태소가 결합해서 한 어절을 이룰 경우 그 어절 내부의 형태소의 경계점, 여러 어절이 한 어절을 이룰 때 구성 어절의 경계점에서 서로 다른 적용 양상을 보인다. 본 논문에서는 이러한 문제를 해결하기 위해서 형태음운론적 분석에 기반하여 문자열을 자동으로 발음열로 변환하는 발음 생성 시스템을 제안하였다. 이 시스템은 한국어에서 빈번하게 발생하는 음운변화 현상의 분석을 통해 정의된 음소 변동 규칙과 변이음 규칙을 다단계로 적용하여 가능한 모든 발음열을 생성한다. 각 음운변화 규칙을 포함하는 대표적인 언절 리스트를 이용하여 구성된 시스템의 안정성을 검증하였고, 발음사전 구성과 학습용 발음열의 유용성을 인식 실험을 통해 평가하였다. 그 결과 표제어 사이의 음운변화 현상을 반영한 발음사전의 경우 5-6% 정도 나은 단어 인식률을 얻었으며, 생성된 발음열을 학습에 사용한 경우에서도 향상된 결과를 얻을 수 있었다.
본 논문에서는 한국의 지하철역명을 위하여 음운론적 특성을 반영한 음소 기반의 음성인식 구현에 관한 방법을 제시하였다. 한국의 지하철역명의 음소 기반의 음성인식을 위하여 사용되는 최적의 유사음소 단위(PLU: Phoneme-Likely Unit)를 선정하기 위하여 네 가지의 Case 별로 PLU set과 음운 현상을 고려한 발음사전을 구성하여 인식률을 평가하였다. 적용된 유사음소 단위의 경우 초성과 종성 자음의 인식 단위 구분 및 음운 현상을 반영한 경우 트라이폰 모델에서 최적의 인식률(97.74%)을 보임을 알 수 있었다.
대화체 연속음성은 자연스러운 발화로 낭독체 문장에 비해 잡음, 간투어와 같은 비문법적인 요소가 많고, 발음의 변이가 심하다. 이런 이유로 대화체 연속음성을 인식하기 위해서는 대화 현상을 분석하고 그 특징을 반영하여야 한다. 본 논문에서는 실제 대화음성에 빈번히 나타나는 대화 현상들을 분류하고 각 현상들을 모델링하여 대화체 연속음성 인식을 위한 기본 베이스라인을 구축하였다. 대화 현상을 묵음 구간과 잡음, 간투어, 반복/수정 발화의 디스풀루언시 (disfluencies), 표준전사와 다른 발음을 갖는 발음변이 현상으로 나누었다. 발음변이 현상은 다시 양성음의 음성음화, 음운축약/탈락현상, 패턴화된 발음변이, 발화오류로 세분화하였다. 대화체 음성인식을 위해서 빈번히 나타나는 묵음구간을 고려한 학습과 잡음, 간투어 처리를 위한 음향모델을 각각 추가하였다. 발음변이 현상에 대해서는 출현빈도수가 높은 것들만을 대상으로 발음사전에 다중 발음열을 추가하였다. 대화현상을 고려하지 않고 낭독체 스타일로 음성인식을 수행하였을 때 형태소 에러율 (MER: Morpheme Error Rate)은 31.65%였다. 이에 대한 형태소 에러율의 절대값 감소는 묵음 모델과 잡음 모델을 적용했을 때 2.08%, 간투어 모델을 적용했을 때 0.73%, 발음변이 현상을 반영했을때 0.92%였으며, 최종적으로 27.92%의 형태소 에러율을 얻었다. 본 연구는 대화체 연속음성 인식을 위한 기초 연구로 음향모델과 어휘모델, 언어모델 각각에 대한 베이스라인으로 삼고자 한다.
이 연구는 한국어 음운구 억양 유형의 변별적 특성과 변이 조건을 밝히기 위한 목적의 일환으로 음운론적인 조건인 음절 수와 분절음 종류가 음운구 억양에 미치는 영향에 대해서 살펴보았다. 4음절을 기준으로, 음운구 억양은 LHLH를 기본형으로 설정할 수 있으며, 음절 수와 분절음 종류가 변이를 만드는 조건으로 작용한다고 할 수 있다. 음절 수는 억양을 곡선에서 직선으로 바꾸는데, 그 기준은 3음절 이하이다. 분절음은 음높이 대역과 음높이 변동에 영향을 미치는데, 첫 번째 분절음은 음운구 억양이 형성되는 음높이 대역에 영향을 미치고, 그 이하의 분절음은 음높이 변동에 영향을 미친다. 첫 번째 분절음이 [+기식성], [+긴장성], [+지속성]을 지니면 높은 대역, 그렇지 않으면 낮은 대역에서 억양이 형성된다. 높은 대역에서 실현되는 억양에서 두 번째 이하의 분절음이 [-기식성], [-긴장성], [-지속성]을 지니게 되면 음높이를 낮은 대역의 최하위까지 하강시키고, 낮은 대역에서 실현되는 억양에서는 [+기식성], [+긴장성], [+지속성]을 지닌 분절음이 LHLH의 두 번째 하강을 저지한다.
This paper aims to analyze pronunciation variations of loanwords produced by Korean and improve the performance of pronunciation modeling of loanwords in Korean by using syllable-based segmentation and phonological knowledge. The loanword text corpus used for our experiment consists of 14.5k words extracted from the frequently used words in set-top box, music, and point-of-interest (POI) domains. At first, pronunciations of loanwords in Korean are obtained by manual transcriptions, which are used as target pronunciations. The target pronunciations are compared with the standard pronunciation using confusion matrices for analysis of pronunciation variation patterns of loanwords. Based on the confusion matrices, three salient pronunciation variations of loanwords are identified such as tensification of fricative [s] and derounding of rounded vowel [ɥi] and [$w{\varepsilon}$]. In addition, a syllable-based segmentation method considering phonological knowledge is proposed for loanword pronunciation modeling. Performance of the baseline and the proposed method is measured using phone error rate (PER)/word error rate (WER) and F-score at various context spans. Experimental results show that the proposed method outperforms the baseline. We also observe that performance degrades when training and test sets come from different domains, which implies that loanword pronunciations are influenced by data domains. It is noteworthy that pronunciation modeling for loanwords is enhanced by reflecting phonological knowledge. The loanword pronunciation modeling in Korean proposed in this paper can be used for automatic speech recognition of application interface such as navigation systems and set-top boxes and for computer-assisted pronunciation training for Korean learners of English.
Do loanword properties emerge in the acquisition of a foreign language and if so, how? Classic studies in adult language learning assumed loanword properties that range from near-ceiling to near-chance level of appearance depending on speech proficiency. The present research argues that such variations reflect different phonological types, rather than speech proficiency. To investigate the difference between learner speech and loanword phonology, the current research analyzes the speech data from five different proficiency levels of 92 Korean speakers who read 19 pairs of English words and sentences that contained loanwords. The experimental method is primarily an acoustical one, by which the phonological cause in the loanwords (e.g., the insertion of [$\Box$] at the end of the word stamp) would be attested to appear in learner speech, in comparison with native speech from 11 English speakers and 11 Korean speakers. The data investigated for the research are of segment deletion, insertion, substitution, and alternation in both learner speech and the native speech. The results indicate that learner speech does not present the loanword properties in many cases, but depends on the types of phonological causes. The relatively easy acquisition of target pronunciation is evidenced in the cases of segment deletion, insertion, substitution, and alternation, except when the loanword property involves the successful command of the target phonology such as the de-aspiration of [p] in apple. Such a case of difficult learning draws a sharp distinction from the cases of easy learning in the development of learner speech, particularly beyond the intermediate level of proficiency. Overall, learner speech departs from loanword phonology and develops toward the native speech value, depending on phonological contrasts in the native and foreign languages.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.