• Title/Summary/Keyword: phenological

Search Result 133, Processing Time 0.024 seconds

Phenological growth stages of Korean ginseng (Panax ginseng) according to the extended BBCH scale

  • Kim, Yun-Soo;Park, Chol-Soo;Lee, Dong-Yun;Lee, Joon-Soo;Lee, Seung-Hwan;In, Jun-Gyo;Hong, Tae-Kyun
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.527-534
    • /
    • 2021
  • Background: Phenological studies are a prerequisite for accomplishing higher productivity and better crop quality in cultivated plants. However, there are no phenological studies on Panax ginseng that improve its production yield. This study aims to redefine the phenological growth stages of P. ginseng based on the existing Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH) scale and proposes a disease control reference. Methods: This study was conducted at the Korea Ginseng Corporation Experiment Station in Gyeonggi province, South Korea. Phenological observations were performed once weekly or twice monthly, based on the developmental stages. The existing BBCH scale with a three-digit code was used to redefine and update P. ginseng's phenological growth codes. Results: The phenological description is divided into eight principal growth stages: three for vegetative growth (perennating bud, aerial shoot, and root development), four for reproductive growth (reproductive organ development, flowering, fruit development, and fruit maturation), and one for senescence according to the extended BBCH scale. A total of 58 secondary growth stages were described within the eight principal growth stages. Under each secondary growth stage, four mesostages are also taken into account, which contains the distinct patterns of the phenological characteristics in ginseng varieties and the process of transplanting seedlings. A practical management program for disease control was also proposed by using the BBCH code and the phenological data proposed in this work. Conclusion: The study introduces an extended BBCH scale for the phenological research of P. ginseng.

Relationship between some Phenological Parameters and Somatic Embryogenesis in Theobroma cacao L.

  • Issali, Auguste Emmanuel;Traore, Abdoulaye;Ngoran, Jeanne Andi Kohi;Koffi, Edmond Kouablan;Sangare, Abdourahamane
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • The relationship between three phenological parameters and somatic embryogenesis was investigated during a two-year period. Staminodes and petals from six hybrids and two clones as controls were sowed on three distinct primary callus growth media. Flowering level, fructification level, and leaf thrusts rhythm as phenological parameters were measured simultaneously during the weekly harvest of flower buds. Mean and coefficient of variation of the measured parameters highlighted stable phenological phases. The relationship between phenological parameters and somatic embryogenesis was investigated first by comparing the variation of somatic embryogenesis and that of the phenological parameters, and second by using Pearson's linear correlation. Except for the fructification level in both control clones the first year, the other parameters recorded stable phenological phases, regardless of the genotype and year. Favorable and unfavorable phases for the somatic embryogenesis were identified. In hybrids, favorable phases included February, August, September, and October. In both control clones, time interval propitious to embryogenesis stretched from February to December. The significance of the coefficient of correlation seemed to establish a relationship between somatic embryogenesis and phenology. However, a causal link could not be established. Leaf thrusts rhythm was revealed to be the phenological parameter most linked to somatic embryogenesis. Attempts to optimize embryogenesis during unfavorable phases, showed that a correction of 2.4 D/TDZ concentration is not the solution.

  • PDF

Changes of Phenological Cycles in South Korea

  • Park, Gwang-Yong
    • Proceedings of the KGS Conference
    • /
    • 2003.05a
    • /
    • pp.75-78
    • /
    • 2003
  • A recent rise in mean global temperatures suggests a shift in the temporal cycles of natural seasons. The impacts of warming trends can alter the temporal and spatial distribution of flora and fauna. Especially, phenological cycles are very sensitive to the occurrence of alternation of hot and cold seasons. Phenological calendars reflect the natural seasonality. In more detail, phenological cycles affects agriculture and human health (i.e. the amount of fruit production and allergies), as well as tourism industries like flower fairs or festivals. (omitted)

  • PDF

The Potential of Sentinel-1 SAR Parameters in Monitoring Rice Paddy Phenological Stages in Gimhae, South Korea

  • Umutoniwase, Nawally;Lee, Seung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.789-802
    • /
    • 2021
  • Synthetic Aperture Radar (SAR) at C-band is an ideal remote sensing system for crop monitoring owing to its short wavelength, which interacts with the upper parts of the crop canopy. This study evaluated the potential of dual polarimetric Sentinel-1 at C-band for monitoring rice phenology. Rice phenological variations occur in a short period. Hence, the short revisit time of Sentinel-1 SAR system can facilitate the tracking of short-term temporal morphological variations in rice crop growth. The sensitivity of SAR backscattering coefficients, backscattering ratio, and polarimetric decomposition parameters on rice phenological stages were investigated through a time-series analysis of 33 Sentinel-1 Single Look Complex images collected from 10th April to 25th October 2020 in Gimhae, South Korea. Based on the observed temporal variations in SAR parameters, we could identify and distinguish the phenological stages of the Gimhae rice growth cycle. The backscattering coefficient in VH polarisation and polarimetric decomposition parameters showed high sensitivity to rice growth. However, amongst SAR parameters estimated in this study, the VH backscattering coefficient realistically identifies all phenological stages, and its temporal variation patterns are preserved in both Sentinel-1A (S1A) and Sentinel-1B (S1B). Polarimetric decomposition parameters exhibited some offsets in successive acquisitions from S1A and S1B. Further studies with data collected from various incidence angles are crucial to determine the impact of different incidence angles on polarimetric decomposition parameters in rice paddy fields.

Relationship between Phenological Stages and Cumulative Air Temperature in Spring Time at Namsan

  • Min, Byeong-Mee;Yi, Dong-Hoon;Jeong, Sang-Jin
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.143-149
    • /
    • 2007
  • To certify predictability for the times of phenological stages from cumulative air temperature in springtime, the first times of budding, leafing, flower budding, flowering and deflowering for 14 woody plants were monitored and air temperature was measured from 2005 to 2006 at Namsan. Year day index (YDI) and Nuttonson's Index (Tn) were calculated from daily mean air temperature. Of the 14 woody species, mean coefficient of variation was 0.04 in Robinia pseudo-acacia and 0.09 in Alnus hirsuta. However, mean coefficient of variation was 0.30 in Forsythia koreana and Stephanandra incisa and 0.32 in Zanthoxylum schinifolium. Therefore, the times of each phenological stage could be predicted in the former two species but not in latter three species by two indices. Of the five phenological stages, mean coefficient of variation was the smallest at deflowering time and the largest at budding time. In five phenological stages, mean coefficient of variation of YDI was in the range of $0.11{\sim}0.21$ but that of Tn was in the range of $0.15{\sim}0.26$. Therefore, the former was a better index than the latter. Of the species-phenological stage pair, coefficient of variation of YDI was 0.01 in Acer pseudo-sieboldianum - flower budding and below 0.05 in 11 pairs, whereas the YDIs over 0.40 were 4 pairs comprising of Prunus leveilleana - budding (0.51). Coefficient of variation of Tn was 0.01 in A. hirsuta - budding and below 0.05 in 8 pairs. The Tns over 0.40 were 5 pairs comprising of F. koreana - flower budding (0.66).

Flowering and fruiting phenology of herbs, climbers, shrubs, and trees in the deciduous dipterocarp forest of Northern Thailand

  • Janejaree Inuthai
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.134-145
    • /
    • 2023
  • Background: The flowering and fruiting periods play an important role in biological processes. The deciduous dipterocarp forest is an important forest type in Thailand, however the phenological studies are still limited, particularly in different plant life forms. Thus, the present study focused on the flowering and fruiting phenology of herbs, climbers, shrubs, and trees in the deciduous dipterocarp forest at Lampang province of Northern Thailand. Field visits were made to record plant life forms and observe reproductive phenological events at monthly intervals from November 2018 to October 2019 and September to December 2020. Results: The phenological observations were based on 126 species of 45 families and 102 genera. Flowering and fruiting periods showed similar patterns in herbaceous plants, climbers, and shrubs. Most of these species produced flowers and fruits from the end of the rainy season (October) to the winter season (November-January). Whereas most of flowering and fruiting trees were found from the summer season (March-April) to the beginning of the rainy season (May-June). Most of the dry-fruited species occurred during the dry period (winter and summer seasons), while the majority of fleshy-fruited species dominated in the wet period (rainy season). The statistical analysis supported the phenological patterns of flowering and fruiting in the present study. There were significant negative correlations between the number of flowering and fruiting species and temperature. The number of flowering and fruiting species is significantly impacted by the interaction between seasons and plant life forms. Conclusions: Plant life form seems to be the important factor that affects the different phenological patterns in the studied plants. The abiotic and biotic factors play major roles in reproductive phenology. However, long-term study and in-depth phenological observations are necessary for better understanding.

A Phenological Simulation of the Striped Rice Borer, Chilo suppressalis (Walker), Life System (이화명나방 발생의 Phenological Simulation에 관한 연구)

  • Song Yoo Han;Choi Seung Yoon;Hyun Jai Sun;Kim Chang Hyo
    • Korean journal of applied entomology
    • /
    • v.21 no.4 s.53
    • /
    • pp.200-206
    • /
    • 1982
  • A computer simulation model was constructed to explore the phonology of the Striped Rice Borer, Chilo suppressalis (Walker), in Korea. The phenological system model based on the concept of distributed time delay was written in the computer program 'INSECT' and simulated with the estimated parameters of the effective day-degrees (DEL) and the order of time delay (K) for determining the validity of the system model. The accumulated emergence curves obtained from the phenological model were slightly different from the observed light trap data at the early and late stage of the moth emergence in 1978. The differences between observed and simulated $50\%$ emergence date were five to six days in the locations of Suweon and Chuncheon, while it was only two to three days in Iri, Daegu, Boseong, and Milyang. The phenological model should be further improved for simulation of field population changes by adding the information of the time delay process in each developmental stage, the age distribution of overwintered population, and the limiting factors of the borer mortality.

  • PDF

On the Flowering and Leafing Time of Rhododendron mucronulatum and R. schlippenbachii along Elevation at Mt. Kwanak (冠岳山의 高度에 따른 진달래와 철쭉꽃의 開花와 開葉時期)

  • Kim, Joon-Ho;Beung Tae Ryu
    • The Korean Journal of Ecology
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 1985
  • Phenological development, flowering and leafin times of Rhododendron muronulatum and R. schlippenbachii along elevagtion were studied at Mt. Kwanak, 629m high above the sea level, in Seoul. Flowering and leafing time of the former were delayed at the rate of 2.3~3.3 days and those of the latter were of 2.0~3.0 days per 100m ascent. Phenological changes of both plant species were closely correlated with minimum air temperature first, and then soil water content and minimum soil temperature among the climatic factors. Phenological difference caused by altitude and slope direction(southeast-northwest) among the topographic factors was admitted at the high significance level, but the difference by ridgevalley was little.

  • PDF

The Thermal Climate and Phenology in Korea (한국의 온도기후와 생물의 계절변화)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.26 no.2
    • /
    • pp.101-117
    • /
    • 1983
  • The phenological phenomena in terms of year day index (YDI) in South Korea were studied. The YDI was proposed here, because the remainer index such as Nuttonson's index is unadequate for the interpretation on the phenological phenomena of early spring season in sourthern coastal area. The YDI was calculated by summing daily mean temperature of the year days (YD) above physical zero degree in centigrade, based on the data of the Monthly Weather Reports from 1967 to 1980 by the Central Meteorological Office. The pattern of YDI increase with the increase of YD was similar to that of the remainder index such as the Nuttonson's index. The some YDI distribution maps were made by Yim and Kira (1975), dividing into 30'$\times$40' meshes, in latitude and longtude, on the topographical map(1 : 500,000) of the Korea Peninsula. According to the year day of different localities flowering dates of Prunus yedoensis and other phenological phenomena in various species delayed about 3.5 day as the increase of 1 degree of latitude, which coincides with the Hopkins bioclimatic law. It was found that the YDI is useful to interprete the phenology of plant and animal species and to select the optimum range of cultivars in South Korea.

  • PDF

The Analysis of Temporal and Spatial Variation on the Vegetation Area of the Siwha Tidat Flat (시화 갯벌식생범위의 시-공간적 변이 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • This research is aim to analyze of changing landscape and according to phenological cycle from image information of coastal environment obtained by multi-media were analyzed by camera and satellite image. The digital camera and satellite image were used for tidal flat vegetation monitoring during the construction of Sihwa lake. The vegetation type and phenological cycle of Sihwa tidal flat have been changed with the Sihwa lake ecosystem. The environment changes of Sihwa tidal flat area and ecological change were analyzed by field work digital camera images and satellite images. The airborne, UAV and satellite images were classified with the changed elements of coastal ecological environment and tidal flat vegetation monitoring carried out the changed area and shape of vegetation distribution with time series images.