• Title/Summary/Keyword: phenolic composite

Search Result 135, Processing Time 0.025 seconds

A Low-Density Graphite-Polymer Composite as a Bipolar Plate for Proton Exchange Membrane Fuel Cells

  • Dhakate, S.R.;Sharma, S.;Mathur, R.B.
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The bipolar plate is the most important and most costly component of proton exchange membrane fuel cells. The development of a suitable low density bipolar plate is scientifically and technically challenging due to the need to maintain high electrical conductivity and mechanical properties. Here, bipolar plates were developed from different particle sizes of natural and expanded graphite with phenolic resin as a polymeric matrix. It was observed that the particle size of the reinforcement significantly influences the mechanical and electrical properties of a composite bipolar plate. The composite bipolar plate based on expanded graphite gives the desired mechanical and electrical properties as per the US Department of Energy target, with a bulk density of 1.55 $g.cm^{-3}$ as compared to that of ~1.87 $g.cm^{-3}$ for a composite plate based on natural graphite (NG). Although the bulk density of the expanded-graphite-based composite plate is ~20% less than that of the NG-based plate, the I-V performance of the expanded graphite plate is superior to that of the NG plate as a consequence of the higher conductivity. The expanded graphite plate can thus be used as an electromagnetic interference shielding material.

Behaviors of Mechanical Properties of Filament-Winding-Laminated Composites due to Environmental Aging (필라멘트 와인딩 복합재의 환경노화에 따른 기계적물성 평가)

  • Choi Nak-Sam;Yun Young-Ju;Lee Sang-Woo;Kim Duck-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.31-35
    • /
    • 2006
  • Degradation characteristics of filament-winded composites due to accelerated environmental aging have been evaluated under high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP did high reduction by 25% under the influence of high temperature and water while CFRP showed little degradation. However for water-immersed $90^{\circ}$ composites both CFRP and GFRP showed high reduction in tensile strength. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites.

  • PDF

Studies on ILSS and Acoustic Emission Properties of Carbon-Carbon Composites

  • Park, Soo-Jin
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.60-63
    • /
    • 2000
  • In this work, the carbon fibers-reinforced carbon matrix composites made with different carbon char yields of phenolic resin matrix have been characterized by mechanical flexural tests for acoustic emission properties. The composites had been fabricated in the form of two-dimensional polyacrylonitrile based carbon fibers during the carbonization process. It was found that the composites made with the carbon char yield-rich of resin matrix result in better mechanical interfacial properties, i.e., the interlaminar shear strength (ILSS) of the composites. The data obtained from the acoustic emission monitored appeared to show that the composites made with carbon char yield-rich were also more ductile. From the acoustic emission results, the primary composite failure was largely depended on the debonding at interfaces between fibers and matrix. The interlaminar shear strengths of the composites were correlated with the acoustic emission results.

  • PDF

Extraction Conditions for Phenolic Compounds with Antioxidant Activities from White Rose Petals

  • Choi, Jae Kwon;Lee, Yoon Bok;Lee, Kyun Hee;Im, Hae Cheon;Kim, Yun Bae;Choi, Ehn Kyoung;Joo, Seong Soo;Jang, Su Kil;Han, Nam Soo;Kim, Chung Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • The extract of white rose petals has an antioxidant effect and can be used to treat allergic disease. The purpose of this study was to identify optimal conditions for extracting antioxidative compounds from white rose petals with 2,2-diphenyl-1-picrylhydrazyl scavenging activities. A response surface methodology based on a central composite design was used to investigate the effects of three independent variables: ethanol concentration ($X_1$), extraction temperature ($X_2$), and extraction time ($X_3$). The estimated optimal conditions for obtaining phenolic compounds with antioxidant activities were as follows: ethanol concentration of 42% ($X_1$), extraction time of 80 min ($X_3$), and extraction temperature of $75^{\circ}C$ ($X_2$). The estimated optimal conditions for obtaining flavonoid compounds with antioxidant effects were an ethanol concentration of 41% ($X_1$), extraction time of 119 min ($X_3$), and an extraction temperature of $75^{\circ}C$ ($X_2$). Under these conditions, predicted response values for the phenolic and flavonoid contents were 243.5 mg gallic acid equivalent/g dry mass and 19.93 mg catechin equivalent (CE)/g dry mass, respectively.

Computational Modeling and Analysis of Ablative Composites Using Micro-tomographic Images (미세 단층 영상을 이용한 삭마 복합재료의 전산 모델링 및 해석)

  • Cheon, Jae Hee;Roh, Kyung Uk;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.642-648
    • /
    • 2019
  • In this study, Image-based computational analysis using the developed models was performed to predict the degradation of effective properties by ablation. The ablation tests of carbon/phenolic composites were performed using a 0.4 MW arc-heated wind tunnel. The carbon/phenolic composite samples were scanned using the micro-computed tomography (Micro-CT) to analyze the ablation characteristics according to a duration time of the ablation test. By calibrating the scanned images, computational models were developed that reflect the actual microstructure of the ablation composites. Also, nine computational models that reflect the actual pore shape were developed using the created cross-sectional images. Image-based computational analysis using the developed models was performed to predict the degradation of effective properties by ablation and the decrease of effective properties was confirmed with increase of porosity.

Thermomechanical Coupled Analysis of Carbon/phenolic Composite Structures in Reentry Environments (재진입 환경의 탄소/페놀릭 복합재 구조물의 열기계적 연계 해석)

  • Son, Myeong Jin;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.414-421
    • /
    • 2019
  • In this paper, thermomechanical coupled analysis of carbon/phenolic composites structures in reentry environment was performed. The interface of thermomechanical coupled analysis was constructed using commercial software. The governing equations of temperature and displacement fields were considered to simulate change of physical behavior due to pyrolysis and ablation effects. The results of thermomechanical coupled analysis were compared with the results of ablation test using arc-heated wind tunnel. Also, the structural stability of reentry capsule was analyzed using the analysis interface. The excellent ablation characteristics and thermal protection effects of the carbon/phenolic composites were confirmed and the constructed analysis interface can be effectively used to perform thermal protection system design.

A Numerical Study of the High-Velocity Impact Response of a Composite Laminate Using LS-DYNA

  • Ahn, Jeoung-Hee;Nguyen, Khanh-Hung;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • The failure of a Kevlar29/Phenolic composite plate under high-velocity impact from an fragment simulation projectile was investigated using the nonlinear explicit finite element code, LS-DYNA. The composite laminate and the impactor were idealized by solid elements, and the interface between the laminas was modeled as a tiebreak type in LS-DYNA. The interaction between the impactor and laminate was simulated using a surface-to-surface eroding contact algorithm. When the stress level meets the given failure criteria, the layer in the element is eroded. Numerical results were verified through existing test results and showed good agreement.

Interfacial and Thermal Characteristics of Natural Fiber Composites Reinforced with Henequen Surface-Treated with EBI

  • Pang Yansong;Han Seong Ok;Cho Donghwan;Drzal Lawrence T.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.88-91
    • /
    • 2004
  • In this study, a number of natural fiber henequen reinforced polymer matrix composites were successfully fabricated by means of a compression molding technique using chopped henequen fibers surface-treated with different electron beam irradiation (EBI) dosages, thermoplastic poly(butylene succinate), thermosetting unsaturated polyester and phenolic resins. Their interfacial and thermal characteristics were studied in terms of interfacial shear strength, fracture surface, dynamic mechanical properties, dimensional stability, and thermal stability using single fiber microbonding test, SEM, DMA, TMA, and TGA. The results show that their interfacial and thermal properties significantly depend on the intensity of EBl treatment on the natural fiber surface.

  • PDF

Optimization of Blanching Process of Cirsium setidens and Influence of Blanching on Antioxidant Capacity (참취 데치기 최적 공정 확립과 추출물의 항산화 특성 변화)

  • Jo, Hyeon Seon;Ha, Yoo Jin;Kim, Yeon Tae;Kang, Gil Nam;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.173-182
    • /
    • 2017
  • This study was conducted to investigate the change of Aaster scaber antioxidative activity, total phenolic compounds and flavonoids during the blanching processes. With two parameters such as blanching time and temperature, response surface methodology and central composite design was used to study the combined effect of blanching time (90 to 162 sec) and blanching temperature (75 to $99^{\circ}C$). We found that antioxidative activity, total phenolic compounds and flavonoids during the blanching processes were influenced by blanching temperature and time. Within process condition, total phenolic compounds and flavonoids were extracted 3.00 - 35.48 mg/g and 2.35 - 8.38 mg/g, respectively. DPPH radical scavenging activity was 42.10 - 67.14%. The change of total phenolic compounds, flavonoids, and DPPH radical scavenging activity was dependent of blanching temperature more than time. The total phenolic compounds was increased as temperature rise, but flavonoids not. However, DPPH radical scavenging activity was increased during the blanching process.

How Phenolic Composites were chosen - In Case of England (6) (페놀 컴포지트 실용화의 길 - 영국의 경우 (CASE STUDY 6))

  • Nomaguchi, Kanemasa;Forsdyke, Ken L
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.58-66
    • /
    • 2004
  • As the first modem industrialized country in the world, so England UK was safetyfied from "SMOKE FIRE DANCER" at London Underground as the first country also. Indeed, the quick decision maker of Grate London Metropolitan must be serious, while the technology developing people also so eager in rebuilding safer composite system for public security accumulating basic data at their laboratories. Mr. Ken L. Forsdyke, one of co-authors of this paper, who was the project leader at BP Chemicals International Company at that time, is now telling you some key points adding to the stories he mentioned before in this series, "How Phenolic Composites were chosen". Now, with another article of the basic data, our tales of "In Case England" will be closed. May God save people from "Horror SMOKE FIRE".ople from "Horror SMOKE FIRE".IRE&".ot;.