• Title/Summary/Keyword: phenol-formaldehyde resins

Search Result 29, Processing Time 0.025 seconds

Properties and Curing Behavior of Urea-Modified Phenolic Resins

  • Lee, Sang-Min;Park, Sang-Bum;Park, Jong-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.339-346
    • /
    • 2007
  • The influence of adding urea to phenol-formaldehyde (PF) resins as a co-polymer component were investigated aiming at synthesizing useful phenol-urea-formaldehyde resins. Urea was added at 10% by total resin weight. Several methods for the addition of urea to the PF resins during synthesizing resins to see the co-polymerization occurs between urea and PF resins. The urea was added at the beginning, at three different middle stages, and at the end of PF resin synthesis. The copolymerized methylene bridges between phenol and urea molecules were not observed by $^{13}C-NMR;$ no signal around 50ppm. The curing of urea-modified PF resins, evaluated by dynamic mechanical analysis(DMA), showed some differences among the resins. DMA gel times ranged from 2.75 min to 3.25 min and the resins made with earlier urea additions showed slightly shorter gel times. The longest cure time and gelation time was observed for the resin PFU. Catalyst effects on the DMA cure time values of resins were not significant with different amounts of catalyst or different types of catalyst for all resins tested. Gel times of urea-modified PF resins shortened the most by triacetin catalyst.

Utilization of Pyrolysis Oil from Pine Wood as Thermosetting Wood Adhesive Resins

  • Kim, Jae-Woo;Myers, Deland J.;Brown, Robert C.;Kuo, Monlin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.51-60
    • /
    • 2007
  • In this study, the possibility of using pyrolysis oil as wood adhesives was explored. Especially, adhesives were formulated by reacting pyrolysis oil and formaldehyde and also partially replacing phenol with pyrolysis oil in phenol-formaldehyde (PF) adhesive and soy hydrolizate/PF adhesive formulation. The pine wood was fast pyrolyized and the oils were obtained from a series of condensers in the pyrolysis system. The oils from each condenser were first reacted with formaldehyde to explore potential use of the oil itself as adhesive. The lap-shear bond strength test results indicated that the oil itself could be polymerized and form bonds between wood adherends. The oils from each condenser were then mixed together and used as partial replacement of phenol (25, 33, and 50% by weight) in phenol-formaldehyde adhesive. The bond strength of the oil containing PF adhesives was decreased as percent phenol replacement level increased. However, no significant difference was found between 25 and 33% of phenol replacement level. The oil-contained PF resins at 25, 33, and 50% phenol replacement level with different NaOH/Phenol (Pyrolysis oil) molar ratio were further formulated with soy hydrolizate to make soy hydrolizate/pyrolysis oil-phenol formaldehyde adhesive at 6:4 weight (wt) ratio and used for fiberboard manufacturing. Surface internal bond strength (IB) of the boards bonded with 33% replacement at 0.3 NaOH/Phenol (Pyrolysis oil) molar ratio performed better than other replacement levels and molar ratios. Thickness swelling after 24 hr cold water soaking and after 2 hr in boiling water was increased as % replacement of pyrolysis oil increased.

Flexural Modulus of Larch Boards Laminated by Adhesives with Reinforcing Material

  • Injeong LEE;Weontae OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • Economical use of larix (larch) boards (grade 3) in industries is lower than that of imported hardwood; thus, studies have been conducted toward performance improvement of larix boards. Herein, flexural modulus of larix board samples laminated with wood adhesives polyurethane resins, poly (vinyl acetate) resins, phenol-resorcinol-formaldehyde resins, melamine-formaldehyde resins, and urea-formaldehyde resins was compared with that of the samples bonded with adhesives reinforced with mesh-type basalt fibers. Moreover, the flexural moduli of the laminated samples bonded by mesh-type basalt fibers were compared with those of reinforced samples. The results showed that boards laminated with polyurethane and urea-formaldehyde resin adhesives had higher flexural modulus than those without the lamination. In particular, the increase in the flexural modulus was relatively significant for the 2- and 3-ply board structures laminated with polyurethane adhesives compared to those with reinforcement. The 3-ply board structure without reinforcement had the highest flexural modulus when the urea-formaldehyde resin adhesive was used.

Bonding Quality of Adhesives Formulated with Okara Hydrolyzates and Phenol-formaldehyde Resins for Bonding Fancy Veneer onto High-density Fiberboard (두부비지 가수분해물과 페놀수지로 조제한 마루판 화장용 접착제의 접착성능)

  • Yang, In;Ahn, Sye-Hee;Choi, In-Gyu;Choi, Won-Sil;Kim, Sam-Sung;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.388-396
    • /
    • 2009
  • In our study, the potential of okara as an ingredient of new bio-based adhesives was investigated for the production of fancy-veneered flooring boards. Okara was hydrolyzed by 1% sulfuric acid solution (AC) and 1% sodium hydroxide solution (AK). Phenol formaldehyde (PF) prepolymers were prepared as a cross-linker of okara hydrolyzates. Then, okara-based adhesive resins were formulated with 35% AC, 35% AK and 30% PF prepolymer on solid content basis. The adhesive resins were applied on high-density fiberboards (HDF) with the spread rate of $300g/m^2$. After that, oak fancy veneers are covered on the HDF, and then pressed with the pressure of $7kg/m^2$ at $120^{\circ}C$. The experimental variables were three mole ratios of formaldehyde to phenol (1.8, 2.1, 2.4), three assembly time (0, 10, 20 min), and two press time (90 sec, 120 sec), respectively. The fancy-veneered high-density fiberboards were tested by dry tensile strength, glueline failure by wetting and formaldehyde emission. Tensile strength of the boards exceeded the requirement of KS standard. The formaldehyde emissions were approached at the E0 level specified in KS standard. Based on these results, okara can be used as an ingredient of environmentally friendly adhesive resin systems for the production of flooring boards.

Synthesis of Dodecyl Phenol Novolac Epoxy Resin and Physical Properties of Coatings (Dodecyl phenol novolac 에폭시수지의 합성과 도막물성)

  • Lee, Dong-Chan;Kim, Jin-Wook;Choi, Joong-So
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.615-626
    • /
    • 2016
  • In the paper, mild solvent soluble alkyl group modified epoxy resins were prepared via a three-step method; (1) the condensation reaction of dodecyl phenol (DP) and formaldehyde, (2) the crosslinking reaction of dodecyl phnol novolac compound (DPC) and bisphenol A diglycidyl ether, (3) the dodecyl phenol novolac epoxy resins containing fatty acid (DPFA) was prepared by introducing fatty acid to DPC. Equivalent ratios of DP and formaldehyde were 1.25~1.333/1.0. Equivalent ratio of DPC and bisphenol A diglycidyl ether (YD-128) was 1.0/2.0. Reactivity, viscosity, molecular weight, solvent solubility, and physical properties of DPFA were investigated. The result show that as the number of aromatic ring of DPFA increased, viscosity increased and solvent solubility improved. When we test the properties of coatings by blending the synthesized DPFA with a white pigment, DPFAC-5 using triphenylphosphine (TPP) as a ring-open catalyst showed optical performance for drying time, adhesion, hardness, impact resistance, acid resistance and storage stability.

Synthesis of Resol Type Phenol Resins and Their Reaction Properties (Resol형 페놀수지의 합성과 반응특성)

  • Kim, Dong-Kwon;Joe, Ji-Eun;Kim, Jung-Hun;Park, In Jun;Lee, Soo-Bok
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.288-291
    • /
    • 2005
  • Resol type phenol-formaldehyde (PF) resin was synthesized by addition reaction of formaldehyde (F) and phenol (P). And the PF resin was synthesized by condensation reaction in which water was removed. In this work, we studied the influence of experimental parameters in the addition reaction, such as F/P mole ratio, amount of catalyst, reaction temperature, reaction time, and so on. Also, we studied the influence of molecular weight and viscosity of PE resin as a function of condensation time. As a result, in addition reaction, the reaction time decreased remarkably as the catalyst concentration increased, and the time decreased with increasing reaction temperature at a constant catalyst concentration. Also, in condensation reaction, the viscosity of resol type PF resin increased from 1500 to 9000 cps as a function of condensation time; molecular weight showed from 500 to 1100 g/mol.

Influence of Pyrolysis Conditions and Type of Resin on the Porosity of Activated Carbon Obtained From Phenolic Resins

  • Agarwal, Damyanti;Lal, Darshan;TripathiN, V.S.;Mathur, G.N.
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • In polymer precursor based activated carbon, the structure of starting material is likely to have profound effect on the surface properties of end product. To investigate this aspect phenolic resins of different types were prepared using phenol, mcresol and formaldehyde as reactants and $Et_3N$ and $NH_4OH$ as catalyst. Out of these resins two resol resins PFR1 and CFR1 (prepared in excess of formaldehyde using $Et_3N$ as catalyst in the basic pH range) were used as raw materials for the preparation of activated carbons by both chemical and physical activation methods. In chemical activation process both the resins gave activated carbons with high surface areas i.e. 2384 and 2895 $m^2/g$, but pore size distribution in PFR1 resin calculated from Horvath-Kawazoe method, contributes mainly in micropore range i.e. 84.1~88.7 volume percent of pores was covered by micropores. Whereas CFR1 resin when activated with KOH for 2h time, a considerable amount (32.8%) of mesopores was introduced in activated carbon prepared. Physical activation with $CO_2$ leads to the formation of activated carbon with a wide range of surface area (503~1119 $m^2/g$) with both of these resins. The maximum pore volume percentage was obtained in 3-20 ${\AA}$ region by physical activation method.

  • PDF

Effect of Filler Types on Phenol-Formaldehyde Resin Adhesive for Plywood (충전제의 종류가 합판용 페놀수지 접착제에 미치는 효과)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.48-52
    • /
    • 1998
  • Residues such as walnut, pinenut and peanut shells were used as a filler in adhesive for bonding radiata pine plywood. The nutshell residues were prepared by simply drying to 8% moisture content and grinding the dry material using a laboratory Wiley mill with a $75{\mu}m$ (200 mesh) screen. The nutshells residues were compared to a commercial filler commonly used in adhesives by the structural plywood and laminated veneer lumber industry in the United States. The adhesive mixes were made by following the recommended procedure of Georgia-Pacific Resins, Inc., using phenol-formaldehyde resin. For each filler type, three-ply plywoods, 6 mm nominal thickness and 30 by 30 cm in size, were fabricated at two press times (4 and 5 min) and around 30 minute assembly time. Evaluations of the nutshell residues were carried out by tension shear tests after cyclic boil tests on plywood. The results of the performance test included tension shear strength and wood failure. All plywoods made with the nutshell fillers were comparable to those made with the control filler. These results indicate that nutshell residues would be suitable as filler for plywood adhesives.

  • PDF

Development of Adhesive Resins Formulated with Rapeseed Flour Hydrolyzates for Medium Density Fiberboard (MDF) (유채박 가수분해물을 이용한 중밀도섬유판(MDF) 제조용 접착제의 개발)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2012
  • The interest to develop adhesives from renewable resources is growing to substitute petroleum-based adhesive resins in the manufacture of wood based panels. In our study, rapeseed flour (RSF), which is the by-product of bio-diesel produced from rapeseed, were hydrolyzed with acid and alkali. As a crosslinking agents of the RSF hydrolyzates, phenol-formaldehyde prepolymers (PF) were prepared. The RSF hydrolyzates and PF were mixed to complete the formulation of RSF-based adhesive resins, and the resins were applied to make the medium density fiberboard (MDF). The physical and mechanical properties of the MDF were measured to examine whether RSF can be used as raw materials of adhesive resins for the manufacture of MDF or not. The average moisture content and density of the MDF made with RSF-based adhesive resins satisfied the minimum requirement of KS standard, but the thickness swelling was not. The bending strengths of the MDF made with RSF-based adhesive resins were lower than that of the MDF made with commercial UF resins, but the internal bonding strengths of tested MDF in some make-up conditions of RSF-based adhesive resins were higher than that of MDF made with commercial UF resins. These results showed the potential of RSF as a raw material of adhesives for the production of MDF. Future works on the optimal manufacturing process conditions of MDF made with RSF-based adhesive resins are required to improve the performance of MDF made with RSF-based resins.

Development of Adhesive Resins Formulated with Rapeseed Flour Hydrolyzates for Laminated Veneer Lumber and Its Performance Evaluation (유채박을 이용한 단판적층재용 접착제의 개발 및 성능평가)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.221-229
    • /
    • 2011
  • Due to the increase of oil price and the environmental issue such as the emission of volatile organic compounds, the necessity for developing alternative resins of petroleum-based adhesive resins, which have extensively been used for the manufacture of wood-based products, has been speculation since the early 1990. In our study, rapeseed flour (RSF), which is the by-product of bio-diesel produced from rapeseed, were hydrolyzed by enzymes. As a crosslinking agents of the RSF hydrolyzates, phenol-formaldehyde prepolymers (PF) were prepared. The RSF hydrolyzates and PF were mixed to complete the formulation of RSF-based adhesive resins, and the resins were applied to make the laminated veneer lumber (LVL). The physical and mechanical properties of the LVL were measured to examine whether RSF can be used as raw materials of adhesive resins for the fabrication of LVL or not. The average moisture content and soaking delamination rate of the LVL bonded with RSF-based adhesive resins exceeded the minimum requirement of KS standard. Moreover, thermal analysis of the RSF-based resins showed similar tendencies except for the RSF-based adhesive resins formulated with pectinase-hydrolyzed RSF. The bending strengths of the LVL were higher than that of the LVL made with commercial PF resins. These results showed the potential of RSF as a raw material of alternative adhesives for the production of LVL. Further works on the optimal conditions of RSF hydrolysis and spreading characteristics for RSF-based adhesive resins is required to improve the adhesive performance of RSF-based resins.