• Title/Summary/Keyword: phenol novolac

Search Result 22, Processing Time 0.028 seconds

Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance

  • Lee, Dayoung;Jung, Jin-Young;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.192-197
    • /
    • 2014
  • A hierarchical pore structured novolac-type phenol based-activated carbon with micropores and mesopores was fabricated. Physical activation using a sacrificial silicon dioxide ($SiO_2$) template and chemical activation using potassium hydroxide (KOH) were employed to prepare these materials. The morphology of the well-developed pore structure was characterized using field-emission scanning electron microscopy. The novolac-type phenol-based activated carbon retained hierarchical pores (micropores and mesopores); it exhibited high Brunauer-Emmett-Teller specific surface areas and hierarchical pore size distributions. The hierarchical pore novolac-type phenol-based activated carbon was used as an electrode in electric double-layer capacitors, and the specific capacitance and the retained capacitance ratio were measured. The specific capacitances and the retained capacitance ratio were enhanced, depending on the $SiO_2$ concentration in the material. This result is attributed to the hierarchical pore structure of the novolac-type phenol-based activated carbon.

The effect of hexamethylenetetramine contents and cure properties on friction characteristics of phenolic resin (페놀수지의 마찰특성에 미치는 HEXA의 함량 및 경화도의 영향)

  • Kim, Dae-Kyeun;Jang, Ho;Yoon, Ho-Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.49-56
    • /
    • 1999
  • A material was formulated with Phenol novolac and HEXA only. The cure kinetics and thermal characteristics of phenol novolac with various HEXA contents were peformed by differential scanning calorimetry and thermal gravimetric analysis. All kinetic parameters of the curing reaction including the reaction order, activation energy, and rate constant were calculated and reported. The results indicate that the curing reaction goes through an autocatalytic kinetic mechanism. The friction and wear characteristics of this material were determined using friction material testing machine. The friction coefficient of phenol novolac with various HEXA contents was determined using the PV(pressure & velocity) factor. The most stable and highest friction coefficient with a various pressure and velocity condition was found at HEXA 10 wt.% material. The specific wear rate per unit sliding distance with a various HEXA contents was reported.

  • PDF

Synthesis of Dodecyl Phenol Novolac Epoxy Resin and Physical Properties of Coatings (Dodecyl phenol novolac 에폭시수지의 합성과 도막물성)

  • Lee, Dong-Chan;Kim, Jin-Wook;Choi, Joong-So
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.615-626
    • /
    • 2016
  • In the paper, mild solvent soluble alkyl group modified epoxy resins were prepared via a three-step method; (1) the condensation reaction of dodecyl phenol (DP) and formaldehyde, (2) the crosslinking reaction of dodecyl phnol novolac compound (DPC) and bisphenol A diglycidyl ether, (3) the dodecyl phenol novolac epoxy resins containing fatty acid (DPFA) was prepared by introducing fatty acid to DPC. Equivalent ratios of DP and formaldehyde were 1.25~1.333/1.0. Equivalent ratio of DPC and bisphenol A diglycidyl ether (YD-128) was 1.0/2.0. Reactivity, viscosity, molecular weight, solvent solubility, and physical properties of DPFA were investigated. The result show that as the number of aromatic ring of DPFA increased, viscosity increased and solvent solubility improved. When we test the properties of coatings by blending the synthesized DPFA with a white pigment, DPFAC-5 using triphenylphosphine (TPP) as a ring-open catalyst showed optical performance for drying time, adhesion, hardness, impact resistance, acid resistance and storage stability.

Study on Properties of Epoxy Resin Compositions Containing Novolac Derivatives (바이페닐 유도체를 도입한 에폭시 수지 조성물의 특성에 관한 연구)

  • Choi, Su Jung;Kim, Young Chul
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.138-143
    • /
    • 2011
  • Recently epoxy resin compositions having backbone of novolac derivatives with biphenylene compounds have been used as materials of eco-freindly EMC (Epoxy Molding Compound), because the cured epoxy resin compositions show the self-extinguishing without flame retardant additives. In this study, epoxy resin compositions were prepared and cured using novolac derivateves with biphenylene. Their propeties - structures of phenol derivatives and reactivity, thermal expansion, modulus, and thermal degradation - were obtained by DSC, DMA, TMA, TGA method. When both epoxy resin and hardenr had the biphenyl novolac structure, epoxy resin compositions showed low thermal expansion, good mechanical property, and combustion retardation.

Cure Kinetics, Thermal Stabilities and Rheological Properties of Epoxy/phenol Resin Blend System Initiated by Cationic Thermal Latent Catalyst (양이온 열잠재성 개시제에 의한 에폭시/페놀 수지 브랜드 시스템의 경화 동력학.열안정성 및 유변학적 특성)

  • 박수진;서민강;이재락
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.135-142
    • /
    • 1999
  • The effects of 1 wt.% N-benzylpyrazinium hexafluoroantimonate (BPH) as a thermal latent initiator and blend compositions composed of 0, 5, 10, 20 and 40 wt.% of phenol-novolac resin to epoxy resin were investigated in terms of cure kinetics, thermal stabilities and rheological properties. Thermal latent properties of BPH were measured from the conversion as a function of reaction temperature on a dynamic DSC. This cationic BPH system turned out to be an effective thermal latent initiator in the epoxy-phenol curing system. And the increase of phenol-novolac resin concentration led to the decrease in the latent temperature and to the increase of cure activation energy ($E_a$) of the blend system. The thermal stability and activation energy ($E_t$) for decomposition, gel-time and activation energy ($E_c$) for cross-linking from rheometer increased within the composition range of 20~40 wt.% of phenol-novolac resin. This implies that the three-dimensional cross-linking may take place among hydroxyl group within phenol resin, epoxide ring within epoxy resin and BPH.

  • PDF

Investigation of Cure Kinetics and Storage Stability of the o-Cresol Novolac Epoxy Nanocomposites with Pre-intercalated Phenolic Hardeners

  • Hwang, Tae-Yong;Lee, Jae-Wook;Lee, Sang-Min;Nam, Gi-Joon
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The cure kinetics of the epoxy-layered, silicate nanocomposites were studied by differential scanning calorimetry under isothermal and dynamic conditions. The materials used in this study were o-cresol novolac epoxy resin and phenol novolac hardener, with organically modified layered silicates. Various kinetic parameters, including the reaction order, activation energy, and kinetic rate constants, were investigated, and the storage stability of the epoxy-layered silicate nanocomposites was measured. To synthesize the epoxy-layered silicate nanocomposites, the phenolic hardener underwent pre-intercalation by layered silicate. From the cure kinetics analyses, the organically modified layered silicate decreased the activation energy during cure reaction in the epoxy/phenolic hardener system. In addition, the storage stability of the nanocomposite with the pre-intercalated phenolic hardener was significantly increased compared to that of the nanocomposite with direct mixing of epoxy, phenolic hardener, and layered silicate. This was due to the protective effect of the reaction between onium ions and epoxide groups.

Study of Heat of Reaction Between Plasma Polymer Coated Silica Fillers and Biphenyl Epoxy Resin (플라즈마 코팅된 실리카와 에폭시 수지간의 반응성 연구)

  • Kim N. I.;Kang H. M.;Yoon T. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.96-99
    • /
    • 2004
  • Silica fillers were coated by plasma polymer coatings of 1,3-diaminopropane, allylamine, pyrrole, 1,2-epoxy-5-hexene, allyl mercaptan and allyl alcohol using RF plasma (13.56 MHz). The coated fillers were then mixed with biphenyl epoxy, phenol novolac (curing agent) and/or triphenylphosphine (catalyst), and subjected to DSC analyses in order to elucidate the chemical reaction between functional moieties in the plasma polymer coatings and the epoxy resin. Only the samples with 1,3-diaminopropane and allylamine plasma polymer coated silica fillers showed heat of reaction peaks when they were mixed with biphenyl epoxy resin only, while these samples as well as the samples with 1,3-diaminopropane, allylamine and pyrrole plasma polymer coated silica fillers exhibited heat of reaction peaks when mixed with both biphenyl epoxy and phenol novolac (curing agent).

  • PDF

Role of F/P Ratio on Curing Behavior for Phenolic Resol and Novolac Resins by FT-IR (FT-IR 분석에 의한 레졸과 노블락 페놀 수지의 경화거동에 미치는 F/P 몰비)

  • Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.16-24
    • /
    • 2001
  • The curing behavior of a phenolic resin (F/p: 1.3, 1.9, 2.5 for resol resin, F/P: 0.5, 0.7, 0.9 for novolac resin) has been studied by FT-IR spectroscopy. In this study is to synthesis of resol and novolac type phenolic resin with different F/P molar ratios and to compare the level of cure at different curing temperature conditions ($130^{\circ}C$, $160^{\circ}C$, $180^{\circ}C$ for resol resin, $160^{\circ}C$, $170^{\circ}C$, $180^{\circ}C$ for novolac resin) for 3, 5, 7, 10, 20, and 60 (min.), respectively. The conversion (${\alpha}$) was determined by the ratio of the peak area with time to the peak area of non-baked phenolic QH ($3300cm^{-1}$) at spectra. It is concluded that the initial curing rate of resol and novolac resin was increased as the molar ratio of formaldehyde/phenol increased and as the curing temperature of resin increased. According to the analysis was by the homogenous first-order model, the initial curing rate of resol and novolac resin was increased as the molar ratio of formaIdehyde/phenol increased at specific curing temperature.

  • PDF