• Title/Summary/Keyword: phenol degradation

Search Result 175, Processing Time 0.021 seconds

Phenol Treatment Plasma Reactor of Dielectric Barrier Discharge (유전체 장벽 방전 플라즈마 반응기를 이용한 페놀 처리)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.479-488
    • /
    • 2012
  • A Dielectric barrier discharge (DBD) plasma is shown in the present investigation to be effective of phenol degradation in the aqueous solutions in batch reactor with continuous air bubbling. Removal of phenol and effects of various parameters on the removal efficiency in the aqueous solution with high-voltage streamer discharge plasma are studied. The effect of 1st voltage (80 ~ 220 V), air flow rate (3 ~ 7 L/min), pH (3 ~ 11), electric conductivity of solution (4.16 ${\mu}S$/cm, deionized water) ~ 16.57 mS/cm (addition of NaCl 10 g/L) and initial phenol concentration (2.5 ~ 20.0 mg/L) were investigated. The observed results showed that phenol degradation was higher in the basic solution than that of the acidic. The optimum values on the 1st voltage and air flow rate for phenol degradation were 140 V and 6 L/min, respectively. It was considered that absorbance variation of $UV_{254}$ of phenol solution can be use as an indirect indicator of change of the non-biodegradable organic compounds within the treated phenol solution. Electric conductivity was not influenced the phenol degradation. To obtain the removal efficiency of phenol and COD of phenol over 97 % (initial phenol concentration, 10.0 mg/L), 80 min and 120 min were need, respectively. Phenol and COD degradation showed a pseudo-first order kinetics.

Biodegradation of Triehloroethylene by a Phenol-Utilizing Bacterium (Phenol을 이용한 균주에 의한 Trichloroethylene분해)

  • 이숙희;홍성용;하지홍
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.203-209
    • /
    • 1994
  • The bacterial strain which utilizes phenol and degrade TCE was isolated from an industrial waste site. The bacterial strain was named as T5-7 and identified as an Acinetobacter species. After phenol-induction, the strain T5-7 removed TCE efficiently without cell growth. So, it seems that TCE degradation was not related to cell growth. TCE degradation increased when initial cell concentrations of phenol-grown T5-7 were high. In the presence of phenol, initial degradation of TCE was delayed but total amount of degradation was not affected at final stage. The strain cultured in 0.1% yeast extract did not degrade TCE, which indicates that phenol induction was essential to the TCE degradation.

  • PDF

Characterization of Trichloroethylene and Phenol Degradation by Acinetobaeter sp. T5-7 (Acinetobacter sp. T5-7에 의한 Phenol과 Trichloroethylene 분해특성)

  • Hong, Sung-Yong;Lee, Suk-Hee;Lee, Jung-Hae;Ha, Ji-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.255-262
    • /
    • 1995
  • Intact cells of Acinetobacter sp. T5-7 completely degraded trichloroethylene (TCE) following growth with phenol. This strain could grow on at least eleven aromatic compounds, e.g., benzaldehyde, benzene, benzoate, benzylalochol, catechol, caffeic acid, 2.4-D, p-hydroxybenzoate, phenol, protocatechuate and salicylate, and did grow on alkane, such as octane. But except phenol, other aromatic compounds did not induced TCE degradation. Phenol biotransformation products, catechol was identified in the culture media. However, catechol-induced cells did not degrade TCE. So we assumed that phenol hydroxylase was responsible for the degradation of TCE. The isolate T5-7 showed growth in MM2 medium containing sodium lactate and catechol rather than phenol, but did not display phenol hydroxyalse activity, suggesting induction of enzyme synthesis by phenol. Phenol hydroxylase activity was independent of added NADH and flavin adenine dinucleotide but was dependent on NADPH addition. Degradation of phenol produced catechols which are then cleaved by meta-fission. We identified catechol-2.3-dioxygenase by active staining of polyacrylamide gel.

  • PDF

Electrochemical Degradation of Phenol Using Dimensionally Stable Anode (촉매성 산화물 전극을 이용한 페놀의 전기화학적 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.999-1007
    • /
    • 2013
  • Electrochemical degradation of phenol was evaluated at DSA (dimensionally stable anode), JP202 (Ru, 25%; Ir, 25%; other, 50%) electrode for being a treatment method in non-biodegradable organic compounds such as phenol. Experiments were conducted to examine the effects of applied current (1.0~4.0 A), electrolyte type (NaCl, KCl, $Na_2SO_4$, $H_2SO_4$) and concentration (0.5~3.0 g/L), initial phenol concentration (12.5~100.0 mg/L) on phenol degradation and $UV_{254}$ absorbance as indirect indicator of by-product degraded phenol. It was found that phenol concentration decreased from around 50 mg/L to zero after 10 min of electrolysis with 2.5 g/L NaCl as supporting electrolyte at the current of 3.5 A. Although phenol could be completely electrochemical degraded by JP202 anode, the degradation of phenol COD was required oxidation time over 60 min due to the generation of by-products. $UV_{254}$ absorbance can see the impact of as an indirect indicator of the creation and destruction of by-product. The initial removal rate of phenol is 5.63 times faster than the initial COD removal rate.

Degradation of Phenol by Activated Sludge Immobilized with Photo-crosslinked Resin (광경화성 수지에 고정화된 활성슬러지에 의한 페놀 분해)

  • 김선일;윤영재정경훈
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.577-585
    • /
    • 1996
  • Effects of various factors on the phenol degradation by activated sludge immobilized with the photo-crosslinked resin were investigated. The optimum pH on the degradation of phenol in both free and immobilized activated sludge was 7. When the pH of the reaction was varied from 5 to 10, the relative activity of the phenol degradation by the immobilized activated sludge was higher than that by the free activated sludge. A higher rate of phenol degradation was observed when a bead size was smaller. The phenol degradation in the free activated sludge was inhibited at the 3000 mg/L of phenol, while that in the immobilized activated sludge was maintained at the same concentration for 28 hrs without an inhibition. The degradation rates of phenol were not directly proportional to the increasing amount of immobilized beads dosage, but the phenol degradation was made in a rather short time than that for a free sludge system. The relative activities of the immobilized activated sludge after 7 runs of repeated reactions increased about 8 times as that of the first reaction. The activities for the phenol degradation remained stable for at least 80 days when the immobilized activated sludge was stored at an aerobic condition in the wastewater containing phenol. The loading rate as high as 5.59 kg-pheno1/㎥.d could have been achieved during the continuous treatment of phenol by the immobilized activated sludge.

  • PDF

Degradation of Phenol in Water Using Circulation Dielectric Barrier Plasma Reactors (순환식 유전체 장벽 플라즈마 반응기를 이용한 수중 페놀 처리)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.251-260
    • /
    • 2012
  • Objectives: The purpose of this study was evaluating the applicability of the circulation dielectric barrier plasma process (DBD) for efficiently treating non-biodegradable wastewater, such as phenol. Methods: The DBD plasma reactor system in this study consisted of a plasma reactor (discharge, ground electrode and quartz dielectric tube, external tube), high voltage source, air supply and reservoir. Effects of the operating parameters on the degradation of phenol and $UV_{254}$ absorbance such as first voltage (60-180 V), oxygen supply rate (0.5-3 l/min), liquid circulation rate (1.5-7 l/min), pH (3.02-11.06) and initial phenol concentration (12.5-100 mg/l) were investigated. Results: Experimental results showed that optimum first voltage, oxygen supply rate, and liquid circulation rate on phenol degradation were 160 V, 1 l/min, and 4.5 l/min, respectively. The removal efficiency of phenol increased with the increase in the initial pH of the phenol solution. To obtain a removal efficiency of phenol and COD of phenol of over 97% (initial phenol concentration, 50.0 mg/l), 15 min and 180 minutes was needed, respectively. Conclusions: It was considered that the absorbance of $UV_{254}$ for phenol degradation can be used as an indirect indicator of change in non-biodegradable organic compounds. Mineralization of the phenol solution may take a relatively longer time than that required for phenol degradation.

Photodegradation of Phenol over TiO2-SiO2 Catalysts Prepared by Sol-gel Method (졸-겔법으로 제조한 TiO2-SiO2촉매에서 페놀의 광분해 반응)

  • 홍성수;이만식;이근대;주창식
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.597-603
    • /
    • 2002
  • Photocatalytic degradation of phenol was carried out with UV-illuminated TiO$_2$-SiO$_2$ in aqueous suspension. TiO$_2$-SiO$_2$ catalysts were prepared by sol-gel method from the titanium isopropoxide and tetraethylorthosilicate at different Ti/Si ratio and some commercial TiO$_2$ catalysts were used as purchased. All catalysts were characterized by X-ray Diffraction(XRD) and BET surface area analyzer. The effect of reaction conditions, such as initial concentration of phenol, reaction temperature and catalyst weight on the photocatalytic activity was studied. In addition, TiO$_2$-SiO$_2$(49: 1) prepared by sol-gel method showed higher activity than commercial TiO$_2$catalysts on the photocatalytic degradation of phenol. The addition of SiO$_2$ into TiO$_2$hepled to increase the thermal stability of titania which suppressed the formation of anatase into rutile. The photocatalytic degradation of phenol showed pseudo-1st order reaction and the degradation rate increases with decreasing initial phenol concentration.

Photocatalytic Degradation of Pheonol in UV/TiO2 Honeycomb Reactor (UV/TiO2 허니컴 반응기에서 페놀의 광산화 반응)

  • Han, Po-Keun;Park, Sang-Eun;Lee, Sang-Wha
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.100-105
    • /
    • 2006
  • The photocatalytic activity of phenol degradation was investigated with the variation of operating parameters in $UV/TiO_2$ honeycomb reactor. In the comparison of phenol degradation rates among various $TiO_2$, Ishihara (STS-02)-coated honeycomb exhibited a slightly higher photocatalytic activity than Degussa P25-coated honeycomb. On the other hand, honeycomb coated by alcohol-mixed $TiO_2$ (N Co.) did not exhibit any photocatalytic activity on phenol degradation. With the increase of Degussa P25 coating amounts, the honeycomb reactor exhibited the gradual increase of phenol degradation rates. The degradation rate of phenol over $UV/TiO_2$ (Degussa P25) honeycomb reactor was asymptotically increased up to 500 mL/min, subsequently followed by a slight decrease as the recirculation rate (100~700 mL/min) was increased. UV absorption at 269 nm was high due to partial degradation of phenol at initial reaction time because the honeycomb surface was pre-adsorbed by phenol prior to UV irradiation.

Characteristics of phenol degradation by using underwater dielectric barrier discharge plasma (수중 유전체 장벽 방전 플라즈마를 이용한 페놀의 분해 특성)

  • Shin, Gwanwoo;Choi, Seungkyu;Kim, Jinsu;Zhu, Qian;Weon, kyoungja;Lee, Sangill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.243-250
    • /
    • 2019
  • This objective of this study was to investigate the degradation characteristics of phenol, a refractory substance, by using a submerged dielectric barrier discharge (DBD) plasma reactor. To indirectly determine the concentration of active species produced in the DBD plasma, the dissolved ozone was measured. To investigate the phenol degradation characteristics, the phenol and chemical oxygen demand (COD) concentrations were evaluated based on pH and the discharge power. The dissolved ozone was measured based on the air flow rate and power discharged. The highest dissolved ozone concentration was recorded when the injected air flow rate was 5 L/min. At a discharge power of 40W as compared to 70W, the dissolved ozone was approximately 2.7 - 6.5 times higher. In regards to phenol degradation, the final degradation rate was highest at about 74.06%, when the initial pH was 10. At a discharged power of 40W, the rate of phenol decomposition was observed to be approximately 1.25 times higher compared to when the discharged power was 70W. It was established that the phenol degradation reaction was a primary reaction, and when the discharge power was 40W as opposed to 70W, the reaction rate constant(k) was approximately 1.72 times higher.

활성슬러지 고정화 비드를 이용한 페놀 분해에 관한 연구

  • Kim, Seon-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.431-434
    • /
    • 2002
  • Effect of various factors on the phenol degradation by activated sludge immobilized with the photocrosslinked resin were investigated. The optimum pH on the degradation of phenol in both free and immobilized activated sludge was 7. A higher rate of phenol degradation was observed when a bead size, vas smaller. The phenol degradation in the free activated sludge was inhibited at the 3000 mg/L of phenol, while that in the immobilized activated sludge was maintained at the same concentration for 28 hrs without an inhibition.

  • PDF