• Title/Summary/Keyword: phase transition behavior

Search Result 269, Processing Time 0.029 seconds

Dynamic Behavior Study in Systems Containing Nonpolar Hydrocarbon Oil and C12E5 Nonionic Surfactant (C12E5 비이온 계면활성제 수용액과 비극성 탄화수소 오일 사이의 동적 거동 관찰)

  • Bae, Min Jung;Lim, Jong Choo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.46-53
    • /
    • 2009
  • Phase equilibrium and dynamic behavior studies were performed in systems containing $C_{12}E_5$ nonionic surfactant solution and nonpolar hydrocarbon oil. The phase behavior result showed an oil-in-water(O/W) microemulsion(${\mu}E$) in equilibrium with excess oil phase at low temperatures and a water-in-oil(W/O) ${\mu}E$ in equilibrium with excess water phase at high temperatures. For intermediate temperatures a 3 phase region containing excess water, excess oil, and a middle-phase microemulsion was observed and the transition temperature was found to increase with an increase in the chain length of a hydrocarbon oil. Dynamic behavior at low temperatures showed that an oil drop size decreased linearly with time due to solubilization into micelles and the solubilization rate decreased with an increase in the chain length of a hydrocarbon oil. On the other hand, both spontaneous emulsification of water into oil phase and expansion of oil drop with time were observed because of diffusion of surfactant and water into oil phase. Under conditions of a 3 phase region including a middle-phase ${\mu}E$, both rapid solubilization and emulsification of oil into aqueous surfactant solution were found mainly due to the existence of ultra-low interfacial tension. Interfacial tensions were measured as a function of time for n-decane oil drops brought into contact with 1 wt% surfactant solution at $25^{\circ}C$. Both equilibrium interfacial tension and equilibration time were found to increase with an increase in the chain length of a hydrocarbon oil.

Dynamic Behavior Study Using Videomicroscopy in Systems Containing Nonpolar Hydrocarbon Oil and C10E5 Nonionic Surfactant Solution (Videomicroscopy를 이용한 C10E5 비이온 계면활성제 수용액과 비극성 탄화수소 오일 사이의 동적 거동에 관한 연구)

  • Bae, Min-Jung;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.473-478
    • /
    • 2009
  • Phase equilibrium and dynamic behavior studies were performed on systems containing $C_{10}E_5$ nonionic surfactant solutions and nonpolar hydrocarbon oils. The phase behavior showed an oil in water (O/W) microemulsion (${\mu}E$) in equilibrium with excess oil phase at low temperatures and a water in oil (W/O) ${\mu}E$ in equilibrium with excess water phase at high temperatures. For intermediate temperatures a three-phase region containing excess water, excess oil, and a middle-phase microemulsion was observed and the transition temperature was found to increase with an increase in the chain length of a hydrocarbon oil. Dynamic behavior at low temperatures showed that an oil drop size decreased linearly with time due to solubilization into micelles and the solubilization rate decreased with an increase in the chain length of a hydrocarbon oil. On the other hand, both spontaneous emulsification of water into oil phase and expansion of oil drop were observed because of diffusion of surfactant and water into oil phase. Under conditions of a 3 phase region including a middle-phase ${\mu}E$, both rapid solubilization and emulsification of oil into aqueous solutions were found mainly due to the existence of ultra-low interfacial tension. Interfacial tensions were measured as a function of time for n-decane oil drops brought into contact with 1 wt% surfactant solution at $25^{\circ}C$. Both equilibrium interfacial tension and equilibration time increased with an increase in the chain length of a hydrocarbon oil.

Thermotropic Liquid Crystalline Behavior of Poly[1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s (폴리[1-{4-{4'-시아노페닐아조)펜옥시알킬옥시}에틸렌]들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Lee, Jae-Yoon;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.297-306
    • /
    • 2009
  • A homologous series of side chain liquid crystalline polymers, poly [1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s(CAPETn, where n, the number of methylene units in the spacer, is $2{\sim}10$) were synthesized from poly(vinyl alcohol) and 1-{4-(4'-cyanophenylazo)phenoxy}alkylbromides(CAPBn, n=$2{\sim}10$), and their thermotropic liquid crystalline phase behaviors were investigated. The CAPBn with n of $2{\sim}5$ did not show any liquid crystalline behavior, while those with n of 6 and $7{\sim}10$ showed enantiotropic and monotropic nematic phases, respectively. In contrast, among the CAPETn polymers, only CAPET5 exhibited an enantiotropic nematic phase, while other polymers showed monotropic nematic phases. The isotropic-nematic transition temperatures of CAPETns and their entropy variation at the phase transition that were higher values than those of CAPBns, demonstrated a typical odd-even effect as a function of n. These phase transition behaviors were disscussed in terms of the 'virtual trimer model' by Imrie. The mesophase properties of CAPETns were largely different from those reported for the polymers in which the (cyanophenylazo) phenoxy groups are attached to polyacrylate, polymethacrylate, and polystyrene backbones through polymethylene spacers. The results indicate that the mode of chemical linkage of the side group with the main chain plays an important role in the formation, stabilization, and type of mesophase.

Thermotropic Liquid Crystalline Properties of α,ω-Bis(4-cyanoazobenzene-4'-oxy)alkanes (α,ω-비스(4-사이아노아조벤젠-4'-옥시)알케인들의 열방성 액정 특성)

  • Jeong, Seung Yong;Kim, Hyo Gap;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.358-366
    • /
    • 2011
  • A homologous series of linear liquid crystal dimers, the ${\alpha},{\omega}$-bis(4-cyano-azobenzene-4'-oxy)alkanes (CATWETn, where n, the number of methylene units in the spacer, is 2~10) were synthesized, and their thermotropic liquid crystalline phase behavior were investigated. The CATWETn with n of 3 and 6 exhibited monotropic nematic phases, whereas other derivatives showed enantiotropic nematic phases. The nematic-isotropic transition temperatures of the dimers and their entropy variation at the phase transition showed a large odd-even effect as a function of n. This phase transition behavior was rationalized in terms of the change in the average shape of the spacer on varying the parity of the spacer. The thermal stability and degree of order in the nematic phase and the magnitude of the odd-even effect of CATWETn were similar to those for the methoxy-, nitro-, and pentyl-substituted dimers, while they were significantly different from those for the monomesogenic compounds, 1-{4-(4'-cyanophenylazo)phenoxy}alkylbromides and the side-chain liquid-crystalline polymers, the poly[1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s. The results were discussed in terms of 'virtual trimer model' by Imrie.

Effect of Polymer Concentration and Solvent on the Phase Behavior of Poly(ethylene-co-octene) and Hydrocarbon Binary Mixture (Poly(ethylene-co-octene)과 탄화수소 2성분계 혼합물의 상거동에 대한 고분자 농도 및 용매의 영향)

  • Lee, Sang-Ho;Chung, Sung-Yun;Kim, Hyo-Jun;Park, Kyung-Gyu
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.318-323
    • /
    • 2004
  • Cloud-point and bubble-point curves for poly(ethylene-co-13.8 mol% octene) ($PEO_{13.8}$) and Poly(ethylene-co-15.3 mol% octene) ($PEO_{15.3}$) were determined up to $150^{\circ}C$ and 450 bar in hydrocarbons which have different molecular size and structure. Whereas ($PEO_{15.3}$+ n-pentane) system has cloud-point and bubble-point type transitions, ($PEO_{15.3}$+ n-propane) and ($PEO_{15.3}$+ n-butane) systems do only cloud-point type transition. In cyclo-pentane, -hexane, -heptane, and -octane, $PEO_{15.3}$ has a bubble-point transition. ($PEO_{13.8}$+ n-butane) mixture has a critical mixture concentration at 5 wt% PEO. (PEO + hydrocarbon) mixtures exhibit LCST type behavior. Solubility of PEO increases with hydrocarbon size due to increasing dispersion interaction which is favorable to dissolve PEO.

Preparation and Thermal Degradation Behavior of WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx (NOx 제거용 WO3-TiO2 계 SCR 촉매 제조 및 열적열화거동연구)

  • Shin, Byeongkil;Kim, Janghoon;Yoon, Sanghyeon;Lee, Heesoo;Shin, Dongwoo;Min, Whasik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.596-600
    • /
    • 2011
  • Thermal degradation behavior of a $WO_3-TiO_2$ monolithic catalyst was investigated in terms of structural, morphological, and physico-chemical analyses. The catalyst with 4 wt.% $WO_3$ contents were prepared by a wet-impregnation method, and a durability test of the catalysts were performed in a temperature range between $400^{\circ}C$ and $800^{\circ}C$ for 3 h. An increase of thermal stress decreased the specific surface area, which was caused by grain growth and agglomeration of the catalyst particles. The phase transition from anatase to rutile occurred at around $800^{\circ}C$ and a decrease in the Brønsted acid sites was confirmed by structural analysis and physico-chemical analysis. A change in Brønsted acidity can affect to the catalytic efficiency; therefore, the thermal degradation behavior of the $WO_3-TiO_2$ catalyst could be explained by the transition to a stable rutile phase of $TiO_2$ and the decrease of specific surface area in the SCR catalyst.

Strain induced/enhanced ferromagnetism in $Mn_3Ge_2$thinfilms

  • Dung, Dang Duc;Feng, Wuwei;Thiet, Duong Van;Sin, Yu-Ri-Mi;Jo, Seong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.135-135
    • /
    • 2010
  • In Mn-Ge equilibrium phase diagram, many Mn-Ge intermetallic phases can be formed with difference structures and magnetic properties. The MnGe has the cubic structure and antiferromagnetic(AFM) with Neel temperature of 197 K. The calculation predicted that the $MnGe_2$ with $Al_2Cu$-type is hard to separate between the paramagnetic(PM) states and the AFM states because this compound displays PM and AFM configuration swith similar energy. Mn-doped Ge showed the FM with Currie temperature of 285 K for bulk samples and 116 K for thin films. In addition, the $Mn_5Ge_3$ compound has hexagonal structure and FM with Curie temperature around 296K. The $Mn_{11}Ge_8$ compound has the orthorhombic structure and Tc is low at 274 K and spin flopping transition is near to 140 K. While the bulk $Mn_3Ge_2$ exhibited tetragonal structure ($a=5.745{\AA}$;$c=13.89{\AA}$) with the FM near to 300K and AFM below 150K. However, amorphous $Mn_3Ge_2$ ($a-Mn_3Ge_2$) was reported to show spin glass behavior with spin-glass transition temperature (Tg) of 53 K. In addition, the transition of crystalline $Mn_3Ge_2$ shifts under high pressure. At the atmospheric pressure, $Mn_3Ge_2$ undergoes the magnetic phase transition from AFM to FM at 158 K. The pressure dependence of the phase transition in $Mn_3Ge_2$ has been determined up to 1 GPa. The transition was found to occur at 1 GPa and 155 K with dT/dP=-0.3K/0.1 GPa. Here report that Ferromagnetic $Mn_3Ge_2$ thin films were successfully grown on GaAs(001) and GaSb(001) substrates using molecular beam epitaxy. Our result revealed that the substrate facilitates to modify magnetic and electrical properties due to tensile/compressive strain effect. The spin-flopping transition around 145 K remained for samples grown on GaSb(001) while it completely disappeared for samples grown on GaAs(001). The antiferromagnetism below 145K changed to ferromagnetism and remained upto 327K. The saturation magnetization was found to be 1.32 and $0.23\;{\mu}B/Mn$ at 5 K for samples grown on GaAs(001) and GaSb(001), respectively.

  • PDF

Thermotropic Liquid Crystalline and Photochemical Phase Transition Behavior of Octa[8-{4-(4'-cyanophenylazo)phenoxy}]octyl and Octa[8-{4-(4'-cyanophenylazo) phenoxycarbonyl}]heptanoated Disaccharides (옥타[8-{4-(4'-시아노페닐아조)펜옥시}]옥틸 그리고 옥타[8-{4-(4'-시아노페닐아조) 펜옥시카보닐}]헵타노화 이당류의 열방성 액정과 광화학적 상전이 거동)

  • Kim, Hyo Gap;Jung, Seung Yong;Jeong, Hee Sung;Ma, Yung Dae
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.776-788
    • /
    • 2012
  • Octa[8-{4-(4'-cyanophenylazo)phenoxy}]octyl and octa[8-{4-(4'-cyanophenylazo)phenoxycarbonyl}]heptanoated disaccharide derivatives were synthesized by reacting cellobiose, maltose, and lactose with 1-{4-(4'-cyanophenylazo) phenoxy}octylbromide or 1-{4-(4'-cyanophenylazo)phenoxycarbonyl}]heptanoyl chloride, and their thermotropic liquid crystalline and photochemical phase transition behavior were investigated. All the {(cyanophenylazo)phenoxy} octyl disaccharide ethers (CADETs) formed monotropic nematic (N) phases, whereas all the {(cyanophenylazo) phenoxycarbonyl}heptanoated disaccharide esters (CADESs) exhibited enantiotropic N phases. Compared with CADETs, CADESs showed higher isotropic (I)-to-N phase transition temperatures. Photoirradiation of the disaccharide derivatives in a glass cell or in a cell with a rubbed polyimide (PI) alignment layer at a N phase resulted in disappearance of the N phase due to trans-cis photoisomerization of azobenzene, and the initial N phase was recovered when the irradiated sample was kept in the dark because of cis-trans thermal isomerization and reorientation of trans-azobenzenes. The rates of the photochemical N-I and the thermal I-N phase transition of disaccharide derivatives in a cell with a rubbed PI alignment layer were faster than those in a glass cell, and were significantly different from those observed for the monomesogenic compounds containing cyanoazobenzene and the 4-{4'-(cyanophenylazo)phenoxy}octyl glucose and cellulose ethers. The results were discussed in terms of difference in cooperative motion of azobenzene groups due to the flexibility of the main chain, the number of mesogenic units per repeating units, and the distance between the azobenzene groups.

Mineral Phase Transitions of Jarosite Substituted by Oxyanions during the Reductive Dissolution Using Oxalate Solution (옥살레이트 용액을 이용한 환원성 용해 시 산화음이온으로 치환된 자로사이트의 광물 상변화)

  • Lee, Myoungsin;Lee, Dongho;Chun, Herin;Kim, Yeongkyoo;Baek, YoungDoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.95-106
    • /
    • 2021
  • The SO4 in the jarosite structure can be substituted by other oxyanions, and therefore, the transition of jarosite to goethite plays a very important role in controlling the behavior of oxyanions. In this study, the phase change according to the species of the oxyanion in jarosite and the related behavior of the oxyanion was studied by mineralogical and geochemical methods when jarosite, which is coprecipitated with various oxynions, undergoes a phase change by a reductive dissolution. Jarosite substituted by five oxyanions by 5 mol% was used in this study. The mineral phase change induced by reductive dissolution using ammonium oxalate was investigated, and the order of phase transition rate of jarosite to goethite was MoO4-jarosite ≥ SeO4-jarosite ≥ CrO4-jarosite > pure jarosite > SeO3-jarosite > AsO4-jarosite, showing that the transition rates vary depending on the substituted oxyanion. The resultant concentration of the leached Fe was slightly different depending on the type of oxyanion and time but did not show a noticeable difference. The concentration of each oxyanion leached according to the change of the mineral phase showed that the order of concentration of oxyanions was Mo > Se(SeO3) > As > Se(SeO4) > Cr in general, and showed a slight increase with time. This trend was related to the species of oxyanions rather than mineral phase change. The results of this study showed that the phase transition of jarosite to goethite was affected by the species of oxyanions, but this tendency did not affect the concentrations leached oxyanions.

A Study on the Effects of Process Parameters on Dynamic Behavior Changes of Turning System (선반에서 공정변수가 가공물의 동적 거동 변화에 미치는 영향에 관한 연구)

  • Kim, Kiho;Oh, Chaeyoun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.21-28
    • /
    • 1997
  • This paper presents the influence of the process parameters on the change in dynamic behavior of a lathe turning system. With variation of feed rate, depth of cut, direction of tool motion, cutting speed and tool location along the workpiece, the dynamic characteristics of stable cutting, chatter transition and fully developed chatter regions are demonstrated. The workpiece vibration during machining is continuously measured at different tool locations along the workpiece and quantitatively analyzed. Complex linear behavior due to change of process parameter values as well as fundamental wystem nonlinearity due to change of process configuration indicated by a tool path dependence of the locations of chatter onset and disappearance are described. Finally, the structural characteristics of the turning system which can have large and nonlinear effects on system behavior are presented.

  • PDF