• Title/Summary/Keyword: phase transition behavior

Search Result 269, Processing Time 0.028 seconds

Phase transition of (Bi, Pb)-2223 superconductor induced by Fe3O4 addition

  • Ko, Y.J.;Oh, J.Y.;Song, C.Y.;Yang, D.S.;Tran, D.H.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • We investigated the effect of Fe3O4 addition on the critical temperature of (Bi, Pb)-2223 polycrystalline samples. Bi1.6Pb0.4Sr2Ca2Cu3O10+δ + x wt. % Fe3O4 (x = 0.0, 0.2, 0.4, 0.6, and 0.8) samples were prepared by using a solid-state reaction method. The analysis of X-ray diffraction data indicates that as Fe3O4 is added, dominant phase of the sample changes from Bi-2223 to Bi-2212 with an increasing Bi-2201 phase. The transition temperature of the samples drastically decreased with the Fe3O4 addition. The resistance data of samples with x = 0.2 and 0.4 showed a double transition indicating a coexistence of Bi-2223 and Bi-2212 phase while the samples with x = 0.6 and 0.8 showed a single transition with a semiconducting behavior. This phase transition may originate from changes in local structure of the Bi-2223 system by Fe3O4 addition. Analysis of the pair distribution function of the Cu-O pair in the CuO2 plane calculated from extended X-ray absorption fine structure data revealed that the oxygen coordination of copper ion changes from CuO4 planar type (x = 0.0 - 0.4) to CuO5 pyramidal type (x = 0.6, 0.8). The correlated Debye-Waller factor, providing information on the atomic disorder within the CuO2 plane, shows an inverse relation to the coordination number. These results indicate that addition of Fe3O4 changes the oxygen distribution around Cu in the CuO2 plane, causing a phase transition from Bi-2223 to more stable Bi-2212/Bi-2201 phases.

Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels (알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성)

  • Kim, Sang-Gyu;Kim, Jae-Yoon;Yun, Tae-Hee;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.519-524
    • /
    • 2021
  • The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.

Order-to-disorder Behavior of Block Copolymer Films

  • Ryu, Du-Yeol;Kim, Eun-Hye;Choe, Seung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.6.2-6.2
    • /
    • 2011
  • Block copolymer (BCP) self-assembly in a film geometry has recently been the focus of increased research interest due to their potential use as templates and scaffolds for the fabrication of nanostructured materials. The phase behavior in a thin film geometry that confines polymer chains to the interfaces will be influenced by the interfacial interactions at substrate/polymer and polymer/air and the commensurability between the equilibrium period (L0) of the BCP and the total film thickness. We investigated the phase transitions for the films of block copolymers (BCPs) on the modified surface, like the order-to-disorder transition (ODT) by in-situ grazing incidence small angle x-ray scattering (GISAXS) and transmission electron microscopy (TEM). The selective interactions on the surface by a PS-grafted substrate provide the preferential interactions with the PS component of the block, while a random copolymer (PS-r-PMMA) grafted substrate do the balanced interfacial interactions on the surface. The thickness dependence of order-to-disorder behavior for BCP films will be discussed in terms of the surface interactions.

  • PDF

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

Effect of Microstructure on Fracture Behavior of Multi-phase Low-density Steel (다상계 저비중강의 파괴거동에 미치는 미세조직의 영향)

  • Shin, Sun-Kyoung;Park, Seong-Jun;Cho, Kyung Mox
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.306-316
    • /
    • 2013
  • Microstructure and fracture behavior of a multi-phase low-density steel were investigated. After hot-rolling and heat treatment, the microstructure of low-density steel was composed of coarse ferrite grains and elongated bands which include second phases such as austenite, martensite and ${\kappa}$-carbide depending on holding time during isothermal heat treatment. After tensile test, microcracks were observed at martensite or ${\kappa}$-carbide interface in the elongated bands. Coarse ferrite grains showed cleavage fracture behavior regardless of second phase. The cleavage fracture of ferrite could be attributed to their coarse grain size and solute atoms that increase ductile-to-brittle transition temperature of ferrite. Despite of the tendency of cleavage fracture in coarse ferrite grains, a specimen having coarse spheroidized ${\kappa}$-carbide particles in the elongated bands showed high total elongation of 30%. Thus, the easiness of plastic deformation in the elongated band seems to play an important role in retardation of cleavage crack formation in coarse ferrite grains.

Phase Behavior of a PEO-PPO-PEO Triblock Copolymer in Aqueous Solutions: Two Gelation Mechanisms

  • Park, Moon-Jeong;Kookheon Char;Kim, Hong-Doo;Lee, Chang-Hee;Seong, Baek-Seok;Han, Young-Soo
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.325-331
    • /
    • 2002
  • Phase behavior of a PEO-PPO-PEO (Pluronic P103) triblock copolymer in water is investigated using small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and rheology. Pluronic P103 shows apparent two gel states in different temperature regions. The first sol-to-gel transition at a lower temperature (i.e., the hard gel I state) turns out to be the hexagonal microphase as evidenced by the combined SANS and SAXS and the frequency dependence of both G′ and G" in rheology. In contrast to the hard gel I, the second sol-to-gel transition (i. e., the hard gel II state) at a higher temperature represents the block copolymer micelles in somewhat disordered state rather than the ordered state seen in the hard gel I. Moreover, turbidity change depending only on the temperature with four distinct regions is observed and the large aggregates with size larger than 5,000 nm are detected with DLS in the turbid solution region. Based upon the present study, two different gelation mechanisms for aqueous PEO-PPO-PEO triblock copolymer solutions are proposed.

Liquid crystalline elastomers; Thermally and optically effected ordering

  • Zumer, Slobodan;Zalar, Bosjan;Lebar, Andrija;Chambers, Martin;Kutnjak, Zdravko;Finkelmann, Heino;Ferrer, Antoni Sanchez
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.553-557
    • /
    • 2005
  • The nature of the phase transition in nematic liquid crystalline elastomer is investigated using NMR and calorimetry. The balance between ordering and disordering effects of the polymer network is identified as crucial for the behavior of the order parameter near the phase transition. The change from supercritical to critical regime with adding low molecular weight liquid crystal to the elastomer is proven.

  • PDF

Electical Transport Properties of La$_{1.6}$Ca$_{1.4}$Mn$_2$O$_{7.07}$ System (La$_{1.6}$Ca$_{1.4}$Mn$_2$O$_{7.07}$의 전기전도특성)

  • 정우환
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.843-847
    • /
    • 1999
  • The dc resistivity dc magnetization and thermopower of layered perovskite La1.6Ca1.4Mn2O7.07 have been studied. The ceramic sample of La1.6Ca1.4Mn2O7.07 undergoes the metal-insulator transition at 120K while a first-order phase transition from a ferromagnetic phase to a paramagnetic phae is observed at 260 K=TC This behavior is quite different from that of the well-known double exchange ferromagnets such as La1-xCaxMnO3 This phenomenon could be understood by considering the effects of the anisotropic double exchange interaction caused by two dimensional Mn-O-Mn networks in this materials. The dc magnetization between 120K and 250K is nearly constant and decreases rapidly with increasing temperature above 250K The measurements of dc resistivity and thermopower indicate that Zener polaron hopping conduction takes place above 260 K.

  • PDF

Estimating the Glass Transition of Oligosaccharides Mixtures through the State Diagram

  • Auh, Joong-Hyuck;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.301-303
    • /
    • 2005
  • State diagram of highly concentrated branched oligosaccharides (HBOS) was constructed to better understand phase behavior of mixtures with different size of oligosaccharides. It showed dramatic plasticizing effect on glass transition, which was successfully described based on Couchman-Karasz equation model. $T_g$' estimated from state diagram corresponded well with previous empirical data measured by maximum ice formation through isothermal holding (annealing) process. Estimated $T_g$' and $C_g$' values were $-36.3^{\circ}C$ and 79.99%, respectively. $T_g$' value of HBOS was approximately $10^{\circ}C$ higher than that of sucrose, while $C_g$' value was similar to those of general carbohydrate materials, which could be useful for applications in frozen system.