• Title/Summary/Keyword: phase transformation temperature

Search Result 513, Processing Time 0.026 seconds

Influence of Nb Addition and Austenitizing Temperature on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Nb 첨가와 오스테나이트화 온도의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.577-582
    • /
    • 2015
  • The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of $M_{23}(C,B)_6$ along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of $3^{\circ}C/s$, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.

Phase stability and Sintered Properties of 1.5mol% Yttria-stabilized Zirconia Ceramics Fabricated by Low Temperature Sintering (저온 열처리로 제작된 1.5 mol% 이트리아 안정화 지르코니아 세라믹스의 상 안정성 및 소결물성)

  • Kyung Tae Kim;Han Cheol Choe;Jeong Sik Park;Jong Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Phase stability of tetragonal crystals in yttria-stabilized zirconia ceramics is dependent on the content of yttria and the heat-treatment condition, related with mechanical properties. In this study, we fabricated the 1.5 mol% yttria-stabilized zirconia (1.5Y-YSZ) ceramics by cold isostatic pressing (CIP) and post-sintering at temperature range of 1200 to 1350℃ for 2 hours and investigated the sintered properties and microstructural evolution. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of 1.5Y-YSZ ceramics were mainly dependent on the sintering temperature. Maximum sintered density of 99.4 % and average grain size of 200-300 nm could be obtained from the heat-treatment condition above sintering temperature at 1300℃ for 2 hours, possessing the superior mechanical hardness with 1200 Hv. However, phase stability of tetragonal grains in 1.5 YSZ ceramics is very low, inducing the phase transformation to monoclinic crystals on specimen surface during cooling after heat-treatment.

Effect of $Si_3N_4$ Whisker and SiC Platelet Addition on Phase Transformation and Mechanical Properties of the $\alpha/\beta$ Sialon Matrix Composites (보강재로 첨가된 $Si_3N_4$ Whisker와 SiC Platelet가 $\alpha/\beta$ Sialon 복합체의 상변태와 기계적 물성에 미치는 영향)

  • 한병동;임대순;박동수;이수영;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1417-1423
    • /
    • 1995
  • α/β sialon based composites containing silicon nitride whisker and silicon carbide platelet were fabricated by hot pressing. Effect of the reinforcing agents on the α to β phase transformation of the sialon as well as on the mechanical properties was investigated. Silicon nitride whisker and silicon carbide platelet promoted the phse transformation. TEM/EDS analysis revealed that the grain containing the whisker had 'core-rim' structure; core being high purity Si3N4 whisker and rim being β-sialon. Flexural strength of the composite decreased with the reinforcement addition which, on the other hand, improved fracture toughness of it. High temperature strength was measured at 1300℃ to be about 130 MPa lower than that measured at RT for the whisker reinforced composites.

  • PDF

Low Temperature Tensile Properties of High Temperature Gas-nitrided Duplex Stainless Steel

  • On, Han-Yong;Kong, Jung-Hyun;Kim, Mi-Jeong;Park, Sang-Joon;Kang, Chang-Yong;Sung, Jang-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.263-268
    • /
    • 2010
  • This investigation was focused on the low temperature tensile properties, phase change, changes in nitrogen content and corrosion resistance in the 22Cr-5Ni-3Mo duplex stainless steel after high temperature gas nitriding and solution annealing (HTGN-SA). From the HTGN-SA treatment, the duplex (ferrite + austenite) phase changed into austenite single phase. The nitrogen content of austenite single-phase steel showed a value of ~0.54%. For the HTGN-SA treated austenitic steel, tensile strength increased with lowering test temperature, on the other hand elongation showed the maximum value of 28.2% at $-100^{\circ}C$. The strain-induced martensitic transformation gave rise to lead the maximum elongation. After HTGN-SA treatment, corrosion resistance of the austenite single-phase steel increased remarkably compared with HTGN- treated steel.

The Effect of Al2O3 addition on the Characteristics of Sintering Behavior, Phase Transformation and Mechanical Properties of Spark Plasma Sintered Si3N4 Ceramics (알루미나 첨가에 의한 질화규소의 방전 플라즈마 소결 거동과 상전이 특성 및 기게적 특성에 미치는 영향)

  • Chae, Jae-Hong;Kim, Dae-Gean;Kim, Kyoung-Hun;Park, Joo-Seok;Ahn, Jong-Pil;Sim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.94-98
    • /
    • 2008
  • Silicon nitride($Si_3N_4)$ is one of the most widely used structural ceramic materials. However silicon nitride is difficult to sinter because of its strong covalent bonding characteristics. In this study, $Si_3N_4$ ceramics were fabricated by spark plasma sintering process with $Y_2O_3$ and $Al_2O_3$ addition to improve the sinterability and the mechanical properties and their phase transformation behavior, microstructure and mechanical properties were evaluated. Fully densified $Si_3N_4$ ceramics could be obtained by spark plasma sintering process at a lower temperature than conventional sintering method. The formation of network microstructure was affected by the addition of $Al_2O_3$ because it could accelerate a to ${\alpha}$ to ${\beta}$ phase transformation of $Si_3N_4$. As a result, the mechanical properties depended on amounts of $Al_2O_3$ addition. The hardness value increased with increasing ${\alpha}$-phase fraction, but fracture toughness value increase with increasing ${\beta}$-phase fraction.

Phase Transformation and Luminescent Properties of Ca1-xSrxAl2O4:Eu2+ Phosphors ([Ca1-xSrxAl2O4:Eu2+] 형광체의 상전이 및 발광특성에 관한 연구)

  • Park, Yun-Jin;Song, Hyun-Don;Jung, Sang-Hyun;Lee, Jee-Hee;Hwang, Min-Ha;Kim, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The phase transformations and luminescent properties of Eu-doped $Ca_{1-x}Sr_xAl_2O_4$ phosphors were investigated. $Ca_{1-x}Sr_xAl_2O_4:Eu^{2+}$ phosphors were synthesized by a solid-state reaction with a flux, $H_3BO_3$. A phase transformation from monoclinic $CaAl_2O_4$ to monoclinic $SrAl_2O_4$ was observed as the x values increased. A high-temperature hexagonal phase of $SrAl_2O_4$ was formed during this transformation as an intermediate phase under an $H_2$ atmosphere due to oxygen vacancies; this did not occur in an air atmosphere. Accordingly, the emission spectra shifted from a blue region to a green region as x increased.

Synthesis of Cubic Boron Nitride by Al-Mg Solvents

  • Park, Jong-Ku;Park, S.T.;S.K. Singhal;S. J. Cui;K. Y. Eun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.187-190
    • /
    • 1997
  • The aluminum-magnesium (Al-Mg) aklloys have been proved to be an effective solvent for synthesis of cubic-phase boron nitride (cBN) from hexagonal-phase boron nitride (hBN) at the conditions of high pressures and high temperatures (HP/HT). Various kinds of hBN powders having different crystallinity have been tested for cBN synthesis with Al-Mg solvents. The conversion ratio from hBN to cBN and the shape of synthesized cBN crystals appeared to be affected strongly by chemical composition and added amount of Al-Mg solvents as well as crystallinity of BN powders. As the magnesium content increased in the Al-Mg solvents, the conversion ratio increased and the size of cBN crystals became larger. The crystal facets developed well in the specimens with solvents having high Mg content. It was observed that a hBNlongrightarrowcBN transformation occurred more easily in the specimens having well crystallized hBN powders. Amorphous BN having much $B_2O_3$ impurity exhibited a low threshold temperature for transformation to cBN, which was attributed to crystallization of amorphous BN to well crystallized hBN prior to transformation into cBN with help of $B_2O_3$.

  • PDF

Study on High Temperature Phase Transformation and Directional Solidification of TiAl-Nb Alloy (TiAl-Nb 합금의 고온상변태와 일방향응고에 관한 연구)

  • Park, Jong-Moon;Jang, Ho-Seung;Kim, Seong-Woong;Kim, Seung-Eon;Shon, Je-Ha;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.5
    • /
    • pp.227-233
    • /
    • 2016
  • Phase transformation phenomenon at high temperature was investigated by using designed TiAl-Nb alloys with addition of the ${\beta}$ stabilizer. Examination of dendritic morphologies in arc-melted button ingot could reveal the crystallography of the primary solidification phase. It was found that the addition of ${\beta}$ stabilizer(Nb) shifted the high temperature region of the binary Ti-Al phase diagram to the high Al composition side so that ${\beta}$ phase forms as a primary crystal even at higher Al composition compared with the binary Ti-Al system. The ${\beta}$ was found to be the primary solidification phase for alloys with Al content less than about 52 at.%. The composition of ${\beta}$ solidification in Ti-Al-Nb ternary system could be determined from the partial liquidus projection which was constructed by observing the microstructure of arc-melted buttons. The Ti-46Al-(6, 8)Nb composition was selected for ${\beta}$ solidification and the directional solidification was performed by a floating zone-type DS apparatus at the growth rate 30 mm/hr respectively.

Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: II. Prediction Model for the Austenitization Kinetics and Austenite Grain Size Considering the Effect of Ferrite Grain Size in Fe-C-Mn Steel (용접 열영향부 미세조직 및 재질예측 모델링: II. Fe-C-Mn 강에서 페라이트 결정립크기의 영향을 고려한 Austenitization kinetics 및 오스테나이트 결정립크기 예측모델)

  • Ryu, Jong-Geun;Moon, Joon-Oh;Lee, Chang-Hee;Uhm, Sang-Ho;Lee, Jong-Bong;Chang, Woong-Sung
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.77-87
    • /
    • 2006
  • Considering ferrite grain size in the base metal, the prediction model for $A_{c3}$ temperature and prior austenite grain size at just above $A_{c3}$ temperature was proposed. In order to predict $A_{c3}$ temperature, the Avrami equation was modified with the variation of ferrite grain size, and its kinetic parameters were measured from non-isothermal data during continuous heating. From calculation using a proposed model, $A_{c3}$ temperatures increased with increasing ferrite grain size and heating rate. Meanwhile, by converting the phase transformation kinetic model that predicts the ferrite grain size from austenite grain size during cooling, a prediction model for prior austenite grain size at just above the $A_{c3}$ temperature during heating was developed.

Effects of impurities on transformation of quartz to cristobalite (Quartz에서 cristobalite로의 전이에 미치는 미량성분의 영향)

  • Jin Kim;Jeong-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.315-324
    • /
    • 1994
  • The effects of impurities of the quartz raw materials on the trasformation of quartz to cristobalite were investigated. As the increase of impurities content, the amount of cristobalite crystal increased, whereas the fusion temperature of quartz and the formation temperature of cristobalite decreased. And the courses of the transformation of quartz to cristobalite were examined. The course of quartz $\rightarrow$ transitional noncrystalline phase $\rightarrow$ melt (T) and quartz $\rightarrow$ transitional noncrystalline phase $\rightarrow$ cristobalite $\rightarrow$ melt (C) were always coexisted on the transformation of quartz. In the case of high purity quartz raw material, the T course was predominant, while in low purity quartz raw material, the C course was predominant. And the calculated density of heat treated sand by the quantitative analysis of quartz and cristobalite phase by XRD is well agreed with the measured density by pycnometer. On the melting proces of quartz glass, the volume expansion of sand at a certain temperature can be estimated with the calculated density data.

  • PDF