• Title/Summary/Keyword: phase shift keying

Search Result 291, Processing Time 0.028 seconds

Performance evaluation of a modified waveform shaping filter for the underwater acoustic communication (수중 음향 통신에 있어서 변형된 파형 정형 필터의 성능 평가)

  • Park, Kyu-Chil;Jeong, Hyunsoo;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.114-119
    • /
    • 2019
  • The transmitted acoustic signals are severely influenced by multiply reflected signals from boundaries, such as sea surface and bottom in the shallow water. Very large reflection signals from boundaries cause inter-symbol interference so that the performance of the underwater acoustic communication is degraded. Usually, the waveform shaping filters are used to prevent the reflected signals under this kind of acoustic channel. Especially, the raised cosine filter is widely used, which can also be used to restrict the bandwidth of the transmitted signal. In this study, we evaluate the raised cosine filter for image data transmission in the shallow water, and propose a new modified raised cosine filter. The QPSK (Quadrature Phase Shift Keying) system is used for the underwater acoustic communication simulations with different distances and symbol rates. As a result, the bit error rate was reduced from the minimum 1.0 % to the maximum 32 %.

Long-range multiple-input-multiple-output underwater communication in deep water (심해에서의 장거리 다중입출력 수중통신)

  • Kim, Donghyeon;Kim, Daehwan;Kim, J.S.;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.417-427
    • /
    • 2021
  • Long-range communication in deep waters must overcome the low data rate due to limited bandwidth. This paper presents the performance of Multiple-Input-Multiple-Output (MIMO) system to increase the data rate. In MIMO system, communication performance is degraded by crosstalk between users and an adaptive passive Time Reversal Processing (TRP) is widely used to eliminate this. In October 2018, long-range underwater acoustic communication experiment was conducted in deep water (1,000 m ~) off the east of Pohang, South Korea. During the experiment, a vertical line array was utilized and communication signals modulated by binary phase shift keying and quadrature phase shift keying with a symbol rate of 512 sps were transmitted. To generate MIMO communication signals, received signals from ranges of 26 km and 30 km is synthesized. Compared to the conventional passive TRP, the adaptive passive TRP eliminates the crosstalk between users and achieves error-free performance with an increase of output signal-to-noise ratio. Therefore, two users separated by 4 km in range achieves an aggregate data rate of 1,024 symbols/s.

[ ${\pi}/4$ ] shift QPSK for NEC structure in multipath channels (멀티패스 채널 환경하에서 NEC 구조를 이용한 ${\pi}/4$ shift QPSK)

  • Pyeon, Yong-Kug;Kang, Ki-Sung;Yim, Hwang-Bin;Shim, Sang-Heung;Yoon, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1212-1216
    • /
    • 2003
  • In this study, the ${\pi}/4$ shift QPSK(quadrature phase shift keying) with NEC(nonredundant error correction) on the multipath channel can detect the burst error as well as random error one by using the second and L-th order phase difference. Therefore, the BER(bit error rate) performance in ${\pi}/4$ shift QPSK is more improved than that of the ${\pi}/4$ shift QPSK without NEC structure. Also, this performance become a bit better in Rayleigh fading channel.

  • PDF

A New PSPM Modulation Scheme for Improving the Power Efficiency (전력 효율을 개선하는 새로운 PSPM 변조 방식)

  • Choe, Jae-Hun;Son, Jong-Won;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.752-759
    • /
    • 2010
  • The low power consumption is the most important design factor for the In-Body communication system of WBAN. The conventional PSSK (Phase-Silence-Shift-keying) modulation technique can be regarded as an extension from PSK modulation. And this PSSK has better power efficiency than PSK modulation, and higher spectral efficiency than FSK modulation. PSSK modulation is to transmit two orthogonal symbols. The transmission power can be lowered because the symbol rate in signal period becomes half. BER performance is improved because transmission power is lower and the modulation symbol distance is widened. In addition, PSSK preserve the low-power and increase the data rate than FSK. In this paper, we analyzed existing PSSK and like to propose a new PSPM (Phase-Shift-Position-Modulation) modulation scheme. This PSPM is evaluated in terms of considered bandwidth efficiency and BER performance, compared with the PSSK. This PSPM modulation method transmits the information data by both PSK symbol data and symbol position data, so that we can significantly improve the power efficiency. New proposed PSPM method could be very useful for the In-body communication that requires the most power efficient system.

A 13.56 MHz Radio Frequency Identification Transponder Analog Front End Using a Dynamically Enabled Digital Phase Locked Loop

  • Choi, Moon-Ho;Yang, Byung-Do;Kim, Nam-Soo;Kim, Yeong-Seuk;Lee, Soo-Joo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.20-23
    • /
    • 2010
  • The analog front end (AFE) of a radio frequency identification transponder using the ISO 14443 type A standard with a 100% amplitude shift keying (ASK) modulation is proposed in this paper and verified by circuit simulations and measurements. This AFE circuit, using a 13.56 MHz carrier frequency, consists of a rectifier, a modulator, a demodulator, a regulator, a power on reset, and a dynamically enabled digital phase locked loop (DPLL). The DPLL, with a charge pump enable circuit, was used to recover the clock of a 100% modulated ASK signal during the pause period. A high voltage lateral double diffused metal-oxide semiconductor transistor was used to protect the rectifier and the clock recovery circuit from high voltages. The proposed AFE was fabricated using the $0.18\;{\mu}m$ standard CMOS process, with an AFE core size of $350\;{\mu}m\;{\times}\;230\;{\mu}m$. The measurement results show that the DPLL, using a demodulator output signal, generates a constant 1.695 MHz clock during the pause period of the 100% ASK signal.

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.

Human Body Communication Using Chirp Spread Spectrum Modulation (Chirp spread spectrum 변조를 이용한 인체 내외 통신 기법)

  • Kim, Kyung-Chul;Jeon, Myeong-Woon;Kim, Ki-Hyun;Lee, Jung-Woo;Nam, Sang-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.440-446
    • /
    • 2010
  • Convergence of IT and BT is considered in many area, especially in medical care industry. The example of this trend is a capsule endoscope. But in a capsule endoscope, communication through human body has a few restrictions. At first, the transmit power should be limited not to have a bad effect on human organs and for the battery capacity. Second, the channel characteristic of human body has not been examined exactly. Third, general modulation / demodulation techniques which require a channel estimation cannot be used because of battery limit. There also may be a lot of interference signals because a capsule endoscope uses UWB bandwidth. In this paper, we introduce Chirp Spread Spectrum Differential Binary Phase Shift Keying(CSS-DBPSK) and propose Chirp Spread Spectrum On-Off Keying(CSS-OOK) which don't require a channel estimation and robust to interference signals. Using CSS-DBPSK or CSS-OOK, we can get 5 dB or 2~3 dB of Eb/N0 gain at 10-5 target BER. And if there are interference signals, those gains of CSS-DBPSK and CSS-OOK are increased.

Maximum Likelihood Receivers for DAPSK Signaling

  • Xiao Lei;Dong Xiaodai;Tjhung Tjeng T.
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.205-211
    • /
    • 2006
  • This paper considers the maximum likelihood (ML) detection of 16-ary differential amplitude and phase shift keying (DAPSK) in Rayleigh fading channels. Based on the conditional likelihood function, two new receiver structures, namely ML symbol-by-symbol receiver and ML sequence receiver, are proposed. For the symbol-by-symbol detection, the conventional DAPSK detector is shown to be sub-optimum due to the complete separation in the phase and amplitude detection, but it results in very close performance to the ML detector provided that its circular amplitude decision thresholds are optimized. For the sequence detection, a simple Viterbi algorithm with only two states are adopted to provide an SNR gain around 1 dB on the amplitude bit detection compared with the conventional detector.

Data Rate Enhancement by using QPSK on Physical Layer of Korea Dedicated Short Range Communications (QPSK 변조를 통한 DSRC Data Rate 향상 방안)

  • Park, Jin-Young;Kim, Han-Kyoung;Jeon, Wang-Won
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.50-54
    • /
    • 2007
  • 현재 국내에서 ITS(Intelligent Transport Systems) 통신방식으로 이 용되고 있는 DSRC 방식은 TTA(한국정보통신기술협회)의 기술표준으로서 대전시,전주시에 적용되어 BIS(Bus Information Service)에 이용되고 있고,최근 고속도로 ETCS(Electronic Toll Collection System)가 DSRC방식으로 전국고속도로 Tollgate 에서 2007년 연말에 개통될 예정이다. DSRC 방식은 2000년에 TTA(한국정보통신기술협회)에서 기술표준이 제정되어 현재 1Mbps 의 Data 용량을 가진다. DSRC 방식의 물리링크 변조방식은 ASK(Amplitude Shift Keying)로 ITS 확장 서비스 적용을 위해 변조방식을 QPSK(Quadrature Phase Shift Keying )로 개선하게 되면 이론적으로 4배의 Data Rate 향상이 이루어진다. 물리적인 RF 변조방식을 ASK에서 QPSK로 바꿔 간단히 Data Rate을 개선하게 되면 회로구현의 경제성이 향상되어 DSRC 응용 서비스가 활성화 될 것이다.

  • PDF

Development of the line coupler for reliable power line communication system (신뢰적인 전력선 통신을 위한 라인 커플러의 개발)

  • Choi, Won-Ho;Im, Byoung-No;Park, Chong-Yeun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2009-2010
    • /
    • 2006
  • This paper presents an adaptive line coupler to match input impedance of the Power line Communication(PLC) modem between access impedance of the power line. This line coupler provides maximum signal power transmiting capability, high reliability. The structure of this coupler is simple and designed to make a easy and low cost. The proposed line coupler is suitable for Amplitude Shift Keying(ASK) or Phase Shift Keying(PSK) modem. To figure out our models, the analysis of the transmitting features of power line channel is performed in the time domain at the carrier frequency. As a result of this study, we present the values of capacitors in the capacitor bank and adaptive line coupler circuit.

  • PDF