• 제목/요약/키워드: phase shift full bridge (PSFB)

검색결과 42건 처리시간 0.042초

Calculation of Leakage Inductance of Integrated Magnetic Transformer with Separated Secondary Winding Used in ZVS PSFB Converter

  • Tian, Jiashen;Zhang, Yiming;Ren, Xiguo;Wang, Xuhong;Tao, Haijun
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.644-651
    • /
    • 2016
  • A novel zero voltage switching (ZVS) phase shift full bridge (PSFB) converter used in geophysical exploration is proposed in this paper. To extend the ZVS ranges and increase power density of the converter, external inductor acting as leakage inductance is applied and integrated into the integrated magnetic (IM) transformer with separated secondary winding. Moreover, the loss of ZVS PSFB converter is also decreased. Besides, the analysis and accurate prediction methodology of the leakage inductance of the IM transformer are proposed, which are based on magnetic energy and Lebedev. Finally, to verify the accuracy of analysis and methodology, the experimental and finite element analysis (FEA) results of IM transformer and 40 kW converter prototypes are given.

위상천이 풀-브릿지 컨버터를 위한 Integrated Magnetic 회로 설계 및 해석 (Analysis and Design of Integrated Magnetic Circuit for Phase Shift Full Bridge Converter)

  • 장은승;이형란;신용환;허태원;김돈식;이효범;신휘범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.406-409
    • /
    • 2008
  • This paper presents the integrated magnetic circuit designing method for phase shift full bridge(PSFB) converter. The integrated magnetic circuit is implemented on redesigned of EI core. The transformer windings are located on center leg and the two inductors are located on the outer legs with air gap. Based on the equivalent circuit model, the principle of operation of the PSFB converter is explained. The operation and performance of the proposed circuit are verified on a 1.2 kW prototype converter. The analysis and design of the integrated magnetic circuit is verified through the experimental and simulation results.

  • PDF

PSFB 컨버터를 이용한 전기자동차용 6.6kW 탑재형 충전기 설계 (Design of 6.6kW On-Board Battery Charger for Electric Vehicle using Phase-Shift Full-Bridge Converter)

  • 안정훈;김윤성;구근완;이병국
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.166-167
    • /
    • 2012
  • 본 논문은 전기자동차 (Electric Vehicles, EVs)용 리튬 이온 (Li-Ion) 배터리의 충전 및 충전 속도 향상을 위하여 6.6kW급 고전력 탑재형 충전기 (On-Board Charger, OBC)를 설계한다. 높은 부하 가변범위와 차량 실장 특성을 고려하여 가용 가능한 토폴로지들 중 최적의 토폴로지로 위상천이 풀-브릿지 컨버터 (Phase-Shift Full-Bridge, PSFB)를 제안하고 타당성을 밝힌다. 또한 토폴로지를 구동하는 스위칭 주파수와 주요 수동소자의 변화에 따른 부피와 효율 등의 Trade-Off 관계를 이론적으로 전개하여 최적화한다.

  • PDF

선박 평형수 처리용 Phase Shift Full Bridge Converter 출력 제어 알고리즘 (An Output Control Algorithm for Phase Shift Full Bridge Converter for Ballast Water Treatment)

  • 이상리;김학원;조관열;정호철;김종혁;박귀철
    • 전력전자학회논문지
    • /
    • 제18권6호
    • /
    • pp.530-539
    • /
    • 2013
  • In large vessels, proper water level must be maintained with a balance for right and left equilibrium by absorbing or draining sea water in ballast water tank. However, this ship's ballast-water can be drained marine organisms to local sea area by world trade and this can be a source of ecological disturb. In order to solve these problems, marine organisms must be removed in accordance with the international covenant for the emission of microorganisms. By this reason, the seawater electrolysis rectifier of low-voltage high-current rectifiers with excellent ability for microbial treatment is required. In this paper, PSFB converter will be discussed for the seawater electrolysis rectifier. Furthermore, a new output control method with the power limit operation under the limited maximum voltage condition is proposed for this rectifier. The simulation for the proposed current control method for PSFB Converter is shown using MATLAB/SIMULINK. Finally the usefulness of the proposed control method is presented by the experimental results.

PSFB 컨버터에서 변압기 최적 설계에 관한 연구 (A Study on the Optimal Design of the Transformer in the PSFB Converter)

  • 이일운
    • 한국전자통신학회논문지
    • /
    • 제11권9호
    • /
    • pp.869-876
    • /
    • 2016
  • 위상변조 풀브리지 컨버터를 설계, 개발하는데 있어, 전력반도체와 그 전력반도체 구동회로, 변압기 및 인덕터, 정류기 등을 포함한 많은 설계 요인들이 존재한다. 그 중에서 위상변조 풀브리지 컨버터의 최적 성능에 매우 큰 영향을 끼치는 것은 변압기 설계이다. 특히 변압기 설계는 대형 컴퓨터 데이터센터에 사용되는 전원장치에서처럼 저전압, 고전류 응용에서 매우 중요하다. 이 논문에서는 위상변조 풀브리지 컨버터의 최적 성능을위한 변압기 설계에 관한 연구 결과를 발표한다. 변압기 설계에 관련된 설계 수식들을 유도하고 세밀한 분석을 한다. 이를 토대로, 12V, 1200W 서버전원장치 응용을 위한 위상변조 풀브리지 컨버터 최적 성능을 위한 변압기 설계를 결과물로 제시한다.

고정 위상 동작 인버터를 포함하는 위상천이 풀 브리지 DC/DC 컨버터 (Phase-Shift Full-Bridge DC/DC Converter with Fixed-Phase Operation Inverter)

  • 김진호;박재성;김홍권;박준우;신용생;지상근;조상호;노정욱;홍성수
    • 전력전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.131-137
    • /
    • 2013
  • In this paper, the phase-shift full-bridge DC/DC converter with fixed-phase operation inverter is proposed. The proposed circuit consists of two full-bridge inverters which are connected in parallel. While one full-bridge inverter operates as the fixed-phase, it regulates the output voltage by adjusting the phase of the other inverter. During the normal operation period, the proposed circuit makes the less amount of conduction loss of the primary switches and secondary synchronous rectifiers, as well as the less amount of the current ripple of the output inductor, than the conventional phase-shift full-bridge DC/DC converter does. Also, it achieves high efficiency by reducing the snubber loss of the secondary synchronous rectifier. To sum up, the present inquiry analyzes the theoretical characteristics of the proposed circuit, and shows the experimental results from a prototype for 450W power supply.

Asymmetrical Pulse-Width-Modulated Full-Bridge Secondary Dual Resonance DC-DC Converter

  • Chen, Zhangyong;Zhou, Qun;Xu, Jianping;Zhou, Xiang
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1224-1232
    • /
    • 2014
  • A full-bridge secondary dual-resonant DC-DC converter using the asymmetrical pulse-width modulated (APWM) strategy is proposed in this paper. The proposed converter achieves zero-voltage switching for the power switches and zero-current switching for the rectifier diodes in the whole load range without the help of any auxiliary circuit. Given the use of the APWM strategy, a circulating current that exists in a traditional phase-shift full-bridge converter is eliminated. The voltage stress of secondary rectifier diodes in the proposed converter is also clamped to the output voltage. Thus, the existing voltage oscillation of diodes in traditional PSFB converters is eliminated. This paper presents the circuit configuration of the proposed converter and analyzes its operating principle. Experimental results of a 1 kW 385 V/48 V prototype are presented to verify the analysis results of the proposed converter.

태양광 발전을 이용한 전기자전거용 배터리 충전장치 (The Battery Charger System for Electric Bicycle using Photovoltaic Power)

  • 원동조;이주혁;김재형;원충연;정용채
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2008
  • In this paper, we propose the battery charging device for electric bicycle using photovoltaic power. DC voltage from the solar cells is low, it needs to be step-up by the power conversion device. The power conversion device applied to this paper is phase-shift full-bridge converter. This converter steps-up from 12${\sim}$22[Vdc] to 36[Vdc] for charging the battery of electric bicycle. Phase-shift full-bridge converter(PSFB) can obtain twice as much DC voltage compared with half-bridge converter, thus it has lower current stress less than half-bridge converter. It is simulated and tested the battery charging device using photovoltaic power.

  • PDF

전기자동차 탑재형 배터리 완속 충전기의 위상천이 풀-브릿지 컨버터 제어시스템 설계 및 구현 (Design and Implementation of a Control System for the Phase Shift Full-bridge Converter of the On-board Charger for Electric Vehicles)

  • 이준혁;정광순;김호경;홍성수;안현식
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1860-1867
    • /
    • 2016
  • In this paper, first, a linearized modeling of a phase shift full-bridge converter used in chargers of electric vehicles is derived by using state-space approach and transfer functions from the duty ratio to output voltage and the inductor current are also verified. second, control systems for the output voltage and the inductor current are designed using the root locus technique. It is illustrated by experimental results that the control performance on the output variables is satisfied with the designed digital control system based on a automobile qualified 32-bit microcontroller.

A Zero Voltage Switching Phase Shift Full Bridge Converter with Separated Primary Winding

  • Kim, Young-Do;Kim, Chong-Eun;Cho, Kyu-Min;Park, Ki-Bum;Cho, In-Ho;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.379-381
    • /
    • 2008
  • Generally additional leakage inductance and two clamp diodes are adopted into the conventional phase shift full bridge (PSFB) converter for reducing the voltage stress of secondary rectifier diodes and extending the range of zero voltage switching (ZVS) operation. However, since additional leakage inductance carries the ac current similar to the primary one, the core and copper loss oriented from additional leakage inductance can be high enough to decrease the whole efficiency of DC/DC converter. Therefore, in this paper, a new ZVS phase shift full bridge converter with separated primary winding (SPW) is proposed. Proposed converter makes the transformer and additional leakage inductor with one ferrite core. Using this method, leakage inductance is controlled by the winding ratio of separated primary winding. Moreover, by manufacturing the both magnetic components with one core, size and core loss can be reduced and it turns out the improvement of efficiency and power density of DC/DC converter. The operational principle of proposed converter is analyzed and verified by the 1.2kW prototype.

  • PDF