• Title/Summary/Keyword: phase shift efficiency

Search Result 160, Processing Time 0.023 seconds

A Study on the Power Supply System for the Arc Lamp (아크램프를 위한 전원공급 시스템의 연구)

  • La, Jae Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.125-130
    • /
    • 2018
  • Arc lamps are now widely utilized as illumination sources for a large number of investigations in wide-field fluorescence microscopy. Among many power converters for the lamp, the PSFB (Phase-Shift Full-Bridge) converter with the ZVS (Zero Voltage Switching) is the most widely used soft switched circuit in high-power applications. Also, in the most luminaries, the power factor has to be more and more important. Thus, the power factor correction(PFC) must be included in the power system. A new igniter module using the switching power device and the transformer is proposed instead of the conventional igniter using the mechanical contactor. The proposed converter with the high power factor and high efficiency is verified through the experimental works.

An Isolated Bidirectional Modular Multilevel DC/DC Converter for Power Electronic Transformer Applications

  • Wang, Zhaohui;Zhang, Junming;Sheng, Kuang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.861-871
    • /
    • 2016
  • With high penetration of renewable energies, power electronic transformers (PETs) will be one of the most important infrastructures in the future power delivery and management system. In this study, an isolated bidirectional modular multilevel DC/DC converter is proposed for PET applications. A modular multilevel structure is adopted as switching valves to sustain medium voltages to achieve modular design and high reliability. Only one high-frequency transformer is used in the proposed converter, which significantly simplifies the circuit and galvanic insulation design. A dual-phase-shift modulation strategy is proposed to regulate the output power and achieve a simple voltage balancing control. A down-scaled (2 kW/20 kHz) prototype is constructed to demonstrate the proposed converter and verify the control strategy. The experimental results comply with the theoretical analysis well, with the highest power efficiency reaching 97.6%.

A Study on the Battery Charger for Next Generation High Speed Train (차세대 고속 전철용 Battery Charger 에 관한 연구)

  • Jeong, Han-Jeong;Lee, Won-Cheol;Lee, Sang-Seok;Paik, Jin-Sung;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.321-324
    • /
    • 2008
  • Recently, there is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Among them, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

Performance Evaluation of Underwater Optical Wireless Communication Depending on the Modulation Scheme

  • Jeong, Gabin;Kim, Sung-Man
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.39-43
    • /
    • 2022
  • Underwater optical wireless communication (UOWC) is a good candidate for high-speed underwater wireless communication. In this work, we compare the performance of several modulation techniques for a UOWC system consisting of a light-emitting diode (LED) with an operating wavelength of 405 nm and a Si avalanche photodiode (APD). In this work, we consider six modulation schemes: 4-quadrature amplitude modulation (QAM), 8-QAM, quadrature phase shift keying (QPSK), binary phase shift keying (BPSK), on-off keying (OOK), and 4-pulse amplitude modulation (PAM). We also consider the cases of pure water and seawater for the working conditions. Our results show that 4-QAM and 8-QAM perform the best, in terms of communication distance and transmission power efficiency, for all water types considered.

Trellis-Coded Differential Unitary Space-Time Modulation with High Spectral Efficiency (고속 데이터 전송을 위한 트렐리스 부호 차동 유일 시공간 변조 기법에 관한 연구)

  • Kim Taeyoung;Kang Changeon;Hong Daesik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.18-24
    • /
    • 2005
  • In this paper, a new trellis-coded differential unitary space-time modulation (TC-DUSTM) scheme based on amplitude/phase-shift-keying (APSK) signals is proposed. In particular, the design criterion of the trellis coding is proposed to combine the trellis coding and DUSTM scheme based on APSK constellation. From the computer simulations, we verify the superiority of the proposed TC-DUSTM based on APSK signals at the higher transmission rate. In addition, the proposed scheme can suppress the irreducible error of the differential scheme.

Multi-Channel Pipelining for Energy Efficiency and Delay Reduction in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 지연 감소를 위한 다중 채널 파리프라인 기법)

  • Lee, Yoh-Han;Kim, Daeyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.11-18
    • /
    • 2014
  • Most of the energy efficient MAC protocols for wireless sensor networks (WSNs) are based on duty cycling in a single channel and show competitive performances in a small number of traffic flows; however, under concurrent multiple flows, they result in significant performance degradation due to contention and collision. We propose a multi-channel pipelining (MCP) method for convergecast WSN in order to address these problems. In MCP, a staggered dynamic phase shift (SDPS) algorithms devised to minimize end-to-end latency by dynamically staggering wake-up schedule of nodes on a multi-hop path. Also, a phase-locking identification (PLI) algorithm is proposed to optimize energy efficiency. Based on these algorithms, multiple flows can be dynamically pipelined in one of multiple channels and successively handled by sink switched to each channel. We present an analytical model to compute the duty cycle and the latency of MCP and validate the model by simulation. Simulation evaluation shows that our proposal is superior to existing protocols: X-MAC and DPS-MAC in terms of duty cycle, end-to-end latency, delivery ratio, and aggregate throughput.

Design of High-Efficiency Full-Bridge Converter and Inverter for ESS (ESS용 고효율 풀브리지 컨버터 및 인버터 설계)

  • Jung, Jae-Hun;Lee, Chang-woo;Choi, Jin-ku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.685-688
    • /
    • 2015
  • A phase-shift full-bridge converter is widely used conventional converter. If the input power change in the variation of the output voltage, there is a time interval freewheeling according to a duty change. This is a factor of reducing the efficiency. In this paper, we propose a method for improving the efficiency of the converter/inverter systems that require high efficiency in the ESS. The proposed method was used for the duty control for solving the fail problem ZVS(Zero Voltage Switching) in Freewheeling interval. The proposed method was verified by experiments.

  • PDF

Design of ZVS DC / DC Converter with Phase-Shifting Topology (영전압스위칭의 위상천이방식 DC/DC 컨버터 설계)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1177-1182
    • /
    • 2018
  • We designed a 500W zero voltage switching DC / DC converter operating at 100Mhz with phase shift topology using UCC3895 driver. The dead time of the UCC3895 driver is designed so that the leading and lagging leg of the full bridge can be driven separately. So, the dead time can be given between the two legs separately. The dead time, which is an asymmetrical relationship between the two legs, enables the implementation of zero voltage switching. This paper proposed a negative feedback circuit design method for stable output voltage. The maximum efficiency of the prototype was 95.5% at $500{\Omega}$ load.

Optimal Selection of Arm Inductance and Switching Modulation for Three-Phase Modular Multilevel Converters in Terms of DC Voltage Utilization, Harmonics and Efficiency

  • Arslan, Ali Osman;Kurtoglu, Mehmet;Eroglu, Fatih;Vural, Ahmet Mete
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.922-933
    • /
    • 2019
  • The arm inductance (AI) of a modular multilevel converter (MMC) affects both the fault and circulating current magnitudes. In addition, it has an impact on the inverter efficiency and harmonic content. In this study, the AI of a three-phase MMC is optimized in a novel way in terms of DC voltage utilization, harmonics and efficiency. This MMC has 10 submodules (SM) per arm and the power circuit topology of the SM is a half-bridge. The optimum AI is adopted and verified in an MMC that has 100 SMs per arm. Then the phase shift (PS) and phase disposition (PD) pulse width modulation (PWM) methods are investigated for better DC voltage utilization, efficiency and harmonics. It is found that similar performances are obtained for both modulation techniques in terms of DC voltage utilization. However, the total harmonic distortion (THD) of the PS-PWM is found to be 0.02%, which is slightly lower than the THD of the PD-PWM at 0.16%. In efficiency calculations, the switching and conduction losses for all of the semiconductor are considered separately and the minimum efficiency of the 100-SM based MMC is found to be 99.62% for the PS-PWM and 99.64% for the PD-PWM with the optimal value of the AI. Simulation results are verified with an experimental prototype of a 6-SM based MMC.

Electrical Characteristics of Helicon Wave plasmas (헬리콘 플라즈마의 전기적 특성)

  • 윤석민;김정형;서상훈;장흥영
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.85-92
    • /
    • 1996
  • The external electricla characteristics of helicon wave plasmas were measured over a wide range of RF power and magnetic filed. External parameters. such as antenna voltage , current, phase shift, and interanl parameter, electron density were measured at 7MHz, 1mTorr Ar discharge . The equivalent discharge resistance and reactance, and the power transfer efficiency were calculated through these measurements. There are a helicon mode which produces high density plasma by helicon wave and a lowmode which produces low density plasma by capaictive electric field. In case of the helicon mode, the anternna voltage and current were lower than those of the low-mode. The phase difference between voltage and current decreased suddenly at the transition point from the low-mode to the helicon mode. Equivalent resistance and power efficiency increased and reactance decreased suddenly at the transition point. These results mean that the power transperred to plasma and the nutual coupling between the antenna and plasma increase as the mode changes from the low-mode to the helicon mode.

  • PDF