• Title/Summary/Keyword: phase rotation

Search Result 461, Processing Time 0.023 seconds

Offset Phase Rotation Shift Keying and Phase Silence Rotation Shift Keying Modulation for Medical In-Body WBAN Systems (의료용 In-Body WBAN 시스템을 위한 Offset Phase Rotation Shift Keying 및 Phase Silence Sotation Shift Keying 변조 방식)

  • Choi, Il-Muk;Won, Kyung-Hoon;Kim, Ki-Yun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.290-297
    • /
    • 2012
  • In this paper, we proposed new modulation schemes, Offset Phase Rotation Shift Keying (OPRSK) and Phase Shift Rotation Shift Keying (PSRSK), for medical in-body wireless body area network (WBAN) systems. In IEEE, the WBAN system is assigned as 802.15. Task Group (TG) 6, and the related standardization is being progressed. Recently, in this Group, Phase Silence Shift Keying (PSSK), Phase Silence Position Keying (PSPK) and Phase Rotation Shift Keying (PRSK), which can obtain higher power efficiency, are proposed as new modulation schemes for low-power operation of WBAN system. However, they have a disadvantage for non-linear amplifier distortion. Therefore, in this paper, we proposed OPRSK and PSRSK, which are robust to non-linear amplification, by employing a phase offset in constellation and a power distribution in symbol duration, and verified that the proposed methods have good perfomance and stable operation through performance evaluation.

Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model

  • Othman, Mohamed I.A.;Alharbi, Amnah M.;Al-Autabi, Al-Anoud M. Kh.
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.447-459
    • /
    • 2020
  • This paper aims to investigate the effect of rotation on a micropolar thermoelastic medium with voids problem. The problem is assessed according to three-phase-lag model. The normal mode analysis used to obtain the analytical expressions of the considered variables. The non-dimensional displacement, temperature, Micro rotation, the change in the volume fraction field, and stress of the material are obtained and illustrated graphically. Comparisons are made with the results predicted by two theories; namely three- phase-lag model (3PHL) and Green-Naghdi theory of type III (G-N III). The considered variables were plotted for different values of the rotation parameter, the phase-lag of heat flux and the phase-lag of temperature. The numerical results reveal that the rotation and the phase-lag times significantly influence the distribution of the field quantities. Some particular cases of interest are deduced from the present investigation.

Design of a Carrier Recovery Loop with Minimum Phase Rotation (Phase Rotation 방지를 위한 Carrier Recovery Loop의 설계)

  • Choi, Han-Jun;Lee, Seung-Jun
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.2
    • /
    • pp.62-67
    • /
    • 1999
  • Phase rotational is a practical problem in the implementation of coherent demodulation. Large phase noise may intorduce phase rotation in the demodulator which results in repeated decision errors. This paper presents a simple and yet very efficient technique in building a carrier recovery loop which minimizes the phase rotation by improving the stability of the decision-directed carrier recovery loop. Simulation shows this novel technique improves the performance of the carrier recovery loop as well as stability.

  • PDF

Effect of rotation on Stoneley waves in orthotropic magneto-thermoelastic media

  • Parveen, Lata;Himanshi, Himanshi
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.395-403
    • /
    • 2022
  • The present research is concerned with the study of Stoneley wave propagation at the interface of two dissimilar homogeneous orthotropic magneto-thermoelastic solids with fractional order theory of type GN-III with three phase-lags and combined effect of hall current and rotation. With the help of appropriate boundary conditions the secular equations of Stoneley waves are obtained in the form of determinant. The characteristics of wave such as phase velocity, attenuation coefficient and specific loss are computed numerically. The effect of rotation on the Stoneley wave's phase velocity, attenuation coefficient, specific loss, displacement components, stress components and temperature change has been depicted graphically. Some particular cases are also derived in this problem.

A Study on the Correlation Results for Fringe Rotation and Delay Tracking of the VCS (VCS의 지연추적과 프린지 회전에 대한 상관결과 고찰)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Oh, ChungSik;Jung, Jin-Seung;Chung, Dong-Kyu;Oyama, Tomoaki;Kawaguchi, Noriyuki;Kobayashi, Hideyuki;Kono, Yusuke;Ozeki, Kensuke;Onuki, Hirohumi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.220-232
    • /
    • 2012
  • In this paper, we investigate the correlation result due to the problems of delay tracking and fringe rotation module in the VCS(VLBI Correlation Subsystem). The VCS, FX-type correlator, adopts the delay tracking and fringe rotation module in order to compensate the delay change and fringe phase of wave signal from the radio source by Doppler's effect. The phase of observed data is also compensated by means of delay tracking and fringe rotation in the correlator, but we confirmed that the phase is unstable by applying long integration period of AIPS(Astronomical Image Processing System) rather than correlator. And the delay value of observed data has the errors of several tens nanoseconds than normal case at the analysis of correlation result. In addition, we found that the phase of correlation results is not connected as the unit of FFT-segment because the initial fringe phase at the fringe rotation module is not correctly determined. In this paper, in order to solve these problems, the original direction of 90 degree phase jump is reversely modified when the bit-shift occurred at the delay tracking. And the initial fringe phase at the fringe rotation module is correctly modified by using the initial phase of observed data. In addition, the parameter calculation module was abnormally operated as designed in the fringe rotation. So, the logical program by the VCS is modified so as to calculate the parameters correctly. Through the experiments of correlation processing over the above problems, the modified proposal algorithm is adequately corrected to the data analysis results, so that the experimental results make it clear for us to operate the developed VCS hardware correlator normally.

Analysis of the Lower Extremity's Coupling Angles During Forward and Backward Running (앞으로 달리기와 뒤로 달리기 시 하지 커플링각 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.149-163
    • /
    • 2006
  • The purpose of this study was to compare the lower extremity's joint and segment coupling patterns between forward and backward running in subjects who were twelve healthy males. Three-dimensional kinematic data were collected with Qualisys system while subjects ran to forward and backward. The thigh internal/external rotation and tibia internal/external rotation, thigh flexion/extension and tibia flexion/extension, tibia internal/external rotation and foot inversion/eversion, knee internal/external rotation and ankle inversion/eversion, knee flexion/extension and ankle inversion/eversion, knee flexion/extension and ankle flexion/extension, and knee flexion/extension and tibia internal/external rotation coupling patterns were determined using a vector coding technique. The comparison for each coupling between forward and backward running were conducted using a dependent, two-tailed t-test at a significant level of .05 for the mean of each of five stride regions, midstance(1l-30%), toe-off(31-50%), swing acceleration(51-70%), swing deceleration(71-90), and heel-strike(91-10%), respectively. 1. The knee flexion/extension and ankle flexion/extension coupling pattern of both foreward and backward running over the stride was converged on a complete coordination. However, the ankle flexion/extension to knee flexion/extension was relatively greater at heel-strike in backward running compared with forward running. At the swing deceleration, backward running was dominantly led by the ankle flexion/extension, but forward running done by the knee flexion/extension. 2. The knee flexion/extension and ankle inversion/eversion coupling pattern for both running was also converged on a complete coordination. At the mid-stance. the ankle movement in the frontal plane was large during forward running, but the knee movement in the sagital plane was large during backward running and vice versa at the swing deceleration. 3. The knee flexion/extension and tibia internal/external rotation coupling while forward and backward run was also centered on the angle of 45 degrees, which indicate a complete coordination. However, tibia internal/external rotation dominated the knee flexion/extension at heel strike phase in forward running and vice versa in backward running. It was diametrically opposed to the swing deceleration for each running. 4. Both running was governed by the ankle movement in the frontal plane across the stride cycle within the knee internal/external rotation and tibia internal/external rotation. The knee internal/external rotation of backward running was greater than that of forward running at the swing deceleration. 5. The tibia internal/external rotation in coupling between the tibia internal/external rotation and foot inversion/eversion was relatively great compared with the foot inversion/eversion over a stride for both running. At heel strike, the tibia internal/external rotation of backward running was shown greater than that of forward(p<.05). 6. The thigh internal/external rotation took the lead for both running in the thigh internal/external rotation and tibia internal/external rotation coupling. In comparison of phase, the thigh internal/external rotation movement at the swing acceleration phase in backward running worked greater in comparison with forward running(p<.05). However, it was greater at the swing deceleration in forward running(p<.05). 7. With the exception of the swing deceleration phase in forward running, the tibia flexion/extension surpassed the thigh flexion/extension across the stride cycle in both running. Analysis of the specific stride phases revealed the forward running had greater tibia flexion/extension movement at the heel strike than backward running(p<.05). In addition, the thigh flexion/extension and tibia flexion/extension coupling displayed almost coordination at the heel strike phase in backward running. On the other hand the thigh flexion/extension of forward running at the swing deceleration phase was greater than the tibia flexion/extension, but it was opposite from backward running. In summary, coupling which were the knee flexion/extension and ankle flexion/extension, the knee flexion/extension and ankle inversion/eversion, the knee internal/external rotation and ankle inversion/eversion, the tibia internal/external rotation and foot inversion/eversion, the thigh internal/external rotation and tibia internal/external rotation, and the thigh flexion/extension and tibia flexion/extension patterns were most similar across the strike cycle in both running, but it showed that coupling patterns in the specific stride phases were different from average point of view between two running types.

Rotational and fractional effect on Rayleigh waves in an orthotropic magneto-thermoelastic media with hall current

  • Lata, Parveen;Himanshi, Himanshi
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.723-732
    • /
    • 2022
  • The present research is concerned to study the effect of fractional parameter and rotation on the propagation of Rayleigh waves in an orthotropic magneto-thermoelastic media with three-phase-lags in the context of fractional order theory of generalized thermoelasticity with combined effect of rotation and hall current. The secular equations of Rayleigh waves are derived by using the appropriate boundary conditions. The wave properties such as phase velocity, attenuation coefficient are computed numerically and the numerical simulated results are presented through graphs to show the effect on all the components. Some special cases are also discussed in the present investigation.

Design of QR Decomposition Processor for GDFE (GDFE를 위한 QR분해 프로세서 설계)

  • Cho, Kyung-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.199-205
    • /
    • 2011
  • This paper presents a QR decomposition processor by exploiting Givens rotation for the GDFE (Generalized Decision Feedback Equalizer). A Givens rotation consists of phase extraction, sine/cosine generation and angle rotation parts. Combining two-stage method (coarse and fine stage) and the fixed-width modified-Booth multiplier, we design an efficient QR decomposition processor. By simulations, it is shown that the proposed QR decomposition processor can be a feasible solution for GDFE.

Ultimate behaviour and rotation capacity of stainless steel end-plate connections

  • Song, Yuchen;Uy, Brian;Li, Dongxu;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.569-590
    • /
    • 2022
  • This paper presents a combined experimental and numerical study on stainless steel end-plate connections, with an emphasis placed on their ultimate behaviour and rotation capacity. In the experimental phase, six connection specimens made of austenitic and lean duplex stainless steels are tested under monotonic loads. The tests are specifically designed to examine the close-to-failure behaviour of the connections at large deformations. It is observed that the rotation capacity is closely related to fractures of the stainless steel bolts and end-plates. In the numerical phase, an advanced finite element model suitable for fracture simulation is developed. The incorporated constitutive and fracture models are calibrated based on the material tests of stainless steel bolts and plates. The developed finite element model exhibits a satisfactory accuracy in predicting the close-to-failure behaviour of the tested connections. Finally, the moment resistance and rotation capacity of stainless steel end-plate connections are assessed based on the experimental tests and numerical analyses.

Automatic Recognition of Hand-written Hangout by the Phase Rotation (위상회전에 의한 필기체 한글의 자동인식)

  • 이주근;김홍기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 1976
  • In this paper, a method is proposed for the recognition of hand-written Hangeul. This is peiformed by extraction of the concave structural segments by phase rotation. Character patterns can be decomposed into the fundamental concave structural segments which are also categorized into segment sects, and the closure and phase features of each segment in set is represented by logics. By rotating the logic pattern, the topological and phase features of segment are extracted for the reliable recognition of the character. It is also evaluated that this method applies to a wide variety of shape, position and declination of the character.

  • PDF