• Title/Summary/Keyword: phase modulation

Search Result 1,375, Processing Time 0.035 seconds

The Analysis and Implementation of Realistic Sound using Doppler Effect (도플러 효과를 이용한 실감 음향 분석 및 구현)

  • Yim, Yong-Min;Lim, Heung-Jun;Heo, Jun-Seok;Park, Jun-Young;Do, Yun-Hyung;Lee, Kangwhan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.523-526
    • /
    • 2017
  • In modern recently technology, 3D-Audio is used to enhance immersion in Virtual Reality. This includes interest of people about VR and AR, which related to the field of computer graphics. In fact, a lot of research has been carried out in recent years into a 3D sound field. However, the existing 3D generator device used for virtual reality does not contain Doppler effect occurred by the sound comes to or leave from a listener, while an angle from the listener and the altitude of the source sound are applied. Therefore, this paper present 3D real sound utilizing Doppler effect with spatial-rotation-speaker. We map the source sound in 3D-space into a real space where a user stays and present 3D real sound by manipulating with rotation angle, phase difference, sound output volume of the sound in 3D-space, according to the location of a virtual source sound. Utilizing both natural Doppler effect of rotating sound that is occurring by spatial-rotation-speaker and artificial Doppler effect generated by frequency-modulation of sound quality could improving the virtual reality for sound condition for perspective listening.

  • PDF

Modulation of Cell Cycle Regulators by Sulforaphane in Human Mepatocarcinoma HepG2 Cells (HepG2 인체간암세포의 세포주기조절인자 발현에 미치는 sulforaphane의 영향)

  • Bae, Song-Ja;Kim, Gi-Young;Yoo, Young-Hyun;Choi, Byung-Tae;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1235-1242
    • /
    • 2006
  • Sulforaphane, an isothiocyanate derived from hydrolysis of glucoraphanin in broccoli and other cruciferous vegetables, was shown to induce phase II detoxification enzymes and inhibit chemically induced mammary tumors in rodents. Recently, sulforaphane is known to induce cell cycle arrest and apoptosis in human canter cells, however its molecular mechanisms are poorly understood. In tile present study, we demonstrated that sulforaphane acted to inhibit proliferation and induce morphological changes of human hepatocarcinoma HepG2 cells. Treatment of HepG2 cells with $10{\mu}M\;or\;15{\mu}M$ sulforaphane resulted in significant G2/M cell cycle arrest as determined by DNA flow cytometry. Moreover, $20{\mu}M$ sulforaphane significantly induced the population of sub-G1 cells suggesting that sulforaphane induced apoptosis. This anti-proliferative effect of sulforaphane was accompanied by a marked inhibition of ryclin A, cyclin 31 and Cdc2 protein. However, the levels of tumor suppressor p53 and Cdk inhibitor p21 mRNA and protein expression were significantly increased by sulforaphane treatment in a concentration-dependent manner. Although further studies are needed, the present work suggests that sulforaphane may be a potential rhemoprevetiveichemotherapeucc agent for the treatment of human cancer cells.

A Multipath Delay Time Detection Method For $\frac{\pi}{4}$ Shift QPSK Modulation Under The Frequency Selective Fading Environment (주파수 선택성 페이딩 환경하에서 $\frac{\pi}{4}$ shift QPSK 변조방식에 대한 다중파의 시간지역 검출법 제안)

  • 조병진;김대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.10
    • /
    • pp.941-950
    • /
    • 1991
  • channel is severely degraded by multipath delay time spread. In this paper. We propose a simple multipath delay time detection method, which has a merit of in serviceable, yet simple H/W realizability for $\pi/4$ shift QPSK by detecting cross channel interference. A $\pi/4$ shift QPSK signal originally has quadrature channel(Q-ch) component. Thus in order to measure CCI between in-phase channel(I-ch) and quadrature channel(Q-ch), which closely related to multipath delay time, Frequency doubling scheme(frequency doubler) and differential detector is proposed, which makes $\pi/4$ shift QPSK signal look like BPSK and also makes it possible for CCI to be detected at I-ch detector output. To get an information from time varying I-ch output signal under the multipath lading environment, a method for obtaining the mean of the absolute value$(V_{MABS}(t))$ and another one for obtaining the root mean square value$(V_{RMS}(t))$ of CCI are proposed. Furthermore, a relationship between delay spread and CCI is also analyzed. In order to confirm theoretical results, computer simulation has been carried out under the quasi-static and Reyleigh distributed two ray multipath fading environments. A fairly good result was obtained. However it was also shown that this method is sensitive to bandwidth restriction to some extent. In addition, some idea for a simple hardware realization for the frequency doubler are given.

  • PDF

A Study on the Development of SSB Modem (디지털 SSB 모뎀 개발에 관한 연구)

  • Kim, Jeong-Nyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1852-1857
    • /
    • 2007
  • The SSB modem performs the modulation process which converts the digital voltage level to the audible frequency band signal and the demodulation process which converts reversely the audible frequency signal to the digital voltage level. The modulator and the demodulator are implemented with a single DSP chip. Because of the SSB specific character, the distortion occurs when the frequency is changed. This distortion has no effect on voice communication but it has an significant effect on data communication. In other words, it is impossible to send data stream with adjacent 2 periods. Therefore, in case of using 2-tone FSK, it is needed to send at least 3 periods to transmit 1 bit. Therefore we implemented the modem using modified phase-delay shift keying to transmit 1 tone signal for high speed transmission. In the 1200[bps] mode, it generates 0, $187{\mu}s$, delay time at 1.3kHz symbol frequency, and in the 2400[bps] mode, 0, $70{\mu}s\;130{\mu}s\;200{\mu}s$, delay time at 1.5kHz symbol frequency. Finally, in the maximum 3600[bps] mode, it generates 0, $100{\mu}s\;160{\mu}s\;250{\mu}s$ 2.0kHz symbol frequency. The measured results of the implemented SSB modem shows a good transfer functional characteristic by spectrum analyzer, almost same bandwidth in pass band and 20dB higher SNR comparing the emu FACTOR and American CLOVER and in the experimental transmitting test, we verified the transmitted data is received correctly in platform.

Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells (RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

Modulation of Cellulalr Quinone Reductase Inducibility by Roasting Treatment and Acid Hydrolysis of Perilla (들깨의 볶음처리와 산가수분해에 의한 세포모델계 Quinone Reductase 활성유도능의 변화)

  • Hong, Eun-Young;Kang, Hee-Jung;Kwon, Chong-Suk;Nam, Young-Jung;Suh, Myung-Ja;Kim, Jong-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.186-192
    • /
    • 1997
  • Increased activities of phase 2 enzymes including quinone reductase(QR) have been reported to be associated with protection of animals from neoplastic, mutagenic, and other toxic effects of many carcinogens. In previous study, we found that methanol extract of roasted and defatted perilla meal induced the activity of quinone reductase, an anticarcinogenic marker enzyme, in murine hepalc1c7 cells. Current study showed that unroasted perilla had a limited QR-inducing activity, suggesting that roasting cause the generation of active component(s). Thus we hypothesized that QR inducer in perilla might be covalently linked to sugar moiety and released during roasting process. Methanol extract of defatted raw perilla was subject to acid treatment in order to hydrolyze the potential sugar moiety. Prolonged hydrolysis of methanol extract of defatted raw perilla at $98{\sim}100^{\circ}C$ increased the ability to induce cytosolic QR activity of hepalclc7 cells. Furthermore roasting at 180 and $200^{\circ}C$ resulted in significant induction of QR activity. The result strongly support the idea that QR inducer(s) is present in bound form in raw perilla and released during roasting. Cellular QR activity was induced proportionately with the increase of concentration of methanol extract of roasted perilla. The induction of QR by defatted perilla was also examined in the cytosols of liver, small intestine, stomach, lung and kidney of male ICR mice. Induction patterns showed specificity with respect to target tissue and roasting of perilla. Unroasted perilla meal (defatted) significantly induced QR in liver and lung, while roasted perilla meal induced QR in liver and stomach. The observation that raw perilla showed similar QR induction patterns to roasted perilla is consistent with our proposal that QR inducer(s) is present in bound form and released by physical and chemical treatments as digestive or microbial enzymes could release the inducers from inactive glycoside forms in gastrointestinal tract of mice. In conclusion, perilla could exert protective effect against chemically induced carcinogenesis by inducing phase 2 enzymes in biological systems regardless of chemical and physical process such as roasting.

  • PDF

($P16^{ink4}$ Methylation in Squamous Cell Carcinoma of the Oral Cavity. (구강 편평세포암종에서 $P16^{ink4}$ 유전자의 Methylation에 대한 연구)

  • Kang, Gin-Won;Kim, Kyung-Wook;Lyu, Jin-Woo;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • The p16 protein is a cyclin dependent kinase inhibitor that inhibits cell cycle progression from $G_1$ phase to S phase in cell cycle. Many p16 gene mutations have been noted in many cancer-cell lines and in some primary cancers, and alterations of p16 gene function by DNA methylation have been noticed in various kinds of cancer tissues and cell-lines. There have been a large body of literature has accumulated indicating that abnormal patterns of DNA methylation (both hypomethylation and hypermethylation) occur in a wide variety of human neoplasma and that these aberrations of DNA methylation may play an important epigenetic role in the development and progression of neoplasia. DNA methylation is a part of the inheritable epigenetic system that influences expression or silencing of genes necessary for normal differentiation and proliferation. Gene activity may be silenced by methylation of up steream regulatory regions. Reactivation is associated with demethylation. Although evidence or a high incidence of p16 alterations in a variety of cell lines and primary tumors has been reported, that has been contested by other investigators. The precise mechanisms by which abnormal methylation might contribute to carcinogenesis are still not fully elucidated, but conceivably could involve the modulation of oncogene and other important regulatory gene expression, in addition to creating areas of genetic instability, thus predisposing to mutational events causing neoplasia. There have been many variable results of studies of head and neck squamous cell carcinoma(HNSCC). This investigation was studied on 13 primary HNSCC for p16 gene status by protein expression in immunohistochemistry, and DNA genetic/epigenetic analyzed to determine the incidence, the mechanisms, and the potential biological significance of its Inactivation. As methylation detection method of p16 gene, the methylation specific PCR(MSP) is sensitive and specific for methylation of any block of CpG sites in a CpG islands using bisulfite-modified DNA. The genomic DNA is modified by treatment with sodium bisulfate, which converts all unmethylated cytosines to uracil(thymidine). The primers designed for MSP were chosen for regions containing frequent cytosines (to distinguish unmodified from modified DNA), and CpG pairs near the 5' end of the primers (to provide maximal discrimination in the PCR between methylated and unmethylated DNA). The two strands of DNA are no longer complementary after bisulfite treatment, primers can be designed for either modified strand. In this study, 13 paraffin embedded block tissues were used, so the fragment of DNA to be amplified was intentionally small, to allow the assessment of methylation pattern in a limited region and to facilitate the application of this technique to samlples. In this 13 primary HNSCC tissues, there was no methylation of p16 promoter gene (detected by MSP and automatic sequencing). The p16 protein-specific immunohistochemical staining was performed on 13 paraffin embedded primary HNSCC tissue samples. Twelve cases among the 13 showed altered expression of p16 proteins (negative expression). In this study, The author suggested that low expression of p16 protein may play an important role in human HNSCC, and this study suggested that many kinds of genetic mechanisms including DNA methylation may play the role in carcinogenesis.

  • PDF

Analgesic Effects of Triptolide via Peripheral and Central Administration in Rat Model of Inflammatory Orofacial Pain (Triptolide의 말초와 중추투여에 의한 흰 쥐의 안면부 통증경감효과)

  • Kim, Yun-Kyung;Choi, Ja-Hyeong;Lee, Hyun-Jung;Son, Yoo-Jin;Yoon, So-Yeong;Lee, Jung-Hwa;Lee, Min-Kyung
    • Journal of dental hygiene science
    • /
    • v.15 no.4
    • /
    • pp.424-429
    • /
    • 2015
  • The aim of this study was to investigate whether peripheral or central administration of triptolide is involved in pain modulation in inflammatory orofacial pain. The inflammatory orofacial pain was induced by the injection of 5% formalin into right vibrissa pad of rats. The pain behavioral response was measured the number of grooming or scratching on the orofacial area for 9 successive 5 minutes intervals. Triptolide was administrated into the identified vibrissa pad (12.5, 25, $50{\mu}g/50{\mu}l$) or intracisternal space (0.01, 0.1, $1{\mu}g/10{\mu}l$) 10 min before formalin injection. The nociceptive responses were reduced in the 2nd phase (11~45 minutes), particularly 20, 30 minutes after fomalin injection following administration of triptolide into vibrissa pad (25, $50{\mu}g/50{\mu}l$). Intracisternal ($1{\mu}g/10{\mu}l$) administration of triptolide alleviated the formalin-induced pain behaviors in the 2nd phase, especially 25~40 minutes after formalin injection. Triptolide could be a promising analgesic agent in the treatment of inflammatory orofacial pain.

Steap4 Stimulates Adipocyte Differentiation through Activation of Mitotic Clonal Expansion and Regulation of Early Adipogenic Factors (Steap4에 의한 지방세포분화 촉진 기전)

  • Sim, Hyun A;Shin, Jooyeon;Kim, Ji-Hyun;Jung, Myeong Ho
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1092-1100
    • /
    • 2020
  • The six-transmembrane epithelial antigen of prostate 4 (Steap4) is a metalloreductase that plays a role in intracellular iron and cupper homeostasis, inflammatory response, and glucose and lipid metabolism. Previously, Steap4 has been reported to stimulate adipocyte differentiation; however, the underlying mechanisms of this action remain unexplored. In the present study, we investigated the molecular mechanisms involved in Steap4-induced adipocyte differentiation using 3T3-L1 cells, immortalized brown adipocyte (iBA) cells, and mouse embryonic fibroblast C3H10T1/2 cells. The knockdown of Steap4 using adenovirus-containing shRNA attenuated mitotic clonal expansion (MCE), as evidenced by the impaired proliferation of 3T3-L1 cells, iBA cells, and C3H10T1/2 cells within 48 hr after adding the differentiation medium. Steap4 knockdown downregulated G1/S phase transition-related cell cycle regulators (including cyclin A and cyclin D) and upregulated cell cycle inhibitors (including p21 and p27). Furthermore, Steap4 knockdown inhibited the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and Akt. Moreover, Steap4 knockdown repressed the expression of early adipogenic activators, such as CCAAT-enhancer-binding protein β (C/EBPβ) and Kruppel-like factor family factor 4 (KLF4). On the other hand, Steap4 knockdown stimulated the expression of adipogenic inhibitors, including KLF2, KLF3, and GATA2. The overexpression of Steap4 using an adenovirus removed the repressive histone marks H3K9me2 and H3K9me3 on the promoter of C/EBPβ. These results indicate that Stepa4 stimulates adipocyte differentiation through the induction of MCE and the modulation of early adipogenic transcription factors, including C/EBPβ, during the early phase of adipocyte differentiation.

Signal Transduction Factors on the Modulation of Radiosusceptibility in K562 Cells (K562 세포의 방사선 감수성 변화에 영향을 미치는 신호전달인자)

  • Yang Kwang Mo;Youn Seon-Min;Jeong Soo-Jin;Jang Ji-Yeon;Jo Wol-Soom;Do Chang-Ho;Yoo Y대-Jin;Shin Young-Cheol;Lee Hyung Sik;Hur Won Joo;Lim Young-Jin;Jeong Min-Ho
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2003
  • Purpose: The human chronic myelogenous leukemia cell line, K562, expresses the chimeric bcr-abl oncoprotein, whose deregulated protein tyrosine kinase activity antagonizes via DNA damaging agents. Previous experiments have shown that nanomolar concentrations of herbimycin A (HWA) coupled with X-irradiation have a synergistic effect in inducing apoptosis in the Ph-positive K562 leukemia cell line, but genistein, a PTK inhibitor, is non selective for the radiation-induced apoptosils on $p210^{bcr/abl}$ protected K562 cells. In these experiments, the cytoplasmic signal transduction pathways, the Induction on a number of transcription factors and the differential gene expression in this model were investigated. Materials and Methids: K562 cells in the exponential growth phase were used in this study. The cells were irradiated with 0.5-12 Gy, using a 6 Mev Linac (Clinac 1800, Varian, USA). Immediately after irradiation, the cells were treated with $0.25/muM$ of HMA and $25/muM$ of genistein, and the expressions and the activities of abl kinase, MAPK family, NF- kB, c-fos, c-myc, and thymidine kinase1 (TK1) were examined. The differential gene expressions induced by PTK inhibitors were also investigated. Results: The modulating effects of herbimycin A and genistein on the radiosensitivity of K562 cells were not related to the bcr-abl kinase activity. The signaling responses through the MAPK family of proteins, were not involved either in association with the radiation-induced apoptosis, which is accelerated by HMA, the expression of c-myc was increased. The combined treatment of genistein, with irradiation, enhanced NF- kB activity and the TK1 expression and activity. Conclusion: The effects of HMA and genistein on the radiosensitivity on the K562 cells were not related to the bcr-abl kinase activity in this study, another signaling pathway, besides the WAPK family responses to radiation to K562 cells, was found. Further evaluation using this model will provide valuable information for the optional radiosensitization or radioprotection.