• Title/Summary/Keyword: phase jump

Search Result 96, Processing Time 0.024 seconds

Mathcad program as a useful tool for the teaching and studying the sport biomechanics (운동역학의 교육과 연구용 도구로서 Mathcad의 유용성)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.301-311
    • /
    • 2004
  • The purpose of this study was to verify the usefulness of the Mathcad program as a tool for the studying and teaching the sport biomechanics. A projectile motion was analyzed because it is the one of the most popular motion in sports activities. A 3 dimensional CG data for the high jump bar clear phase was used to calculate the initial velocity vector of the CG. Linear regression function and other functions such as cubic spline and derivative of Mathcad were used to calculate this vector. Finally, the approach angle to the bar and peak jump height was calculated. Programming in Mathcad was relatively easy compare to traditional computer language such as Fortran and C, because of the unique documentation method of Mathcad. Additionally the 2 and 3 dimensional graph function was very easy and useful to describe the mechanical data. If the use of Mathcad program is more popular in the field of sport biomechanics, it could greatly contribute to overcome the limit of research caused by the lack of proper programming ability.

Competitive Phase Separation in a Crystallizable Polymer Solution

  • Lee, Hwan-Kwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.12-17
    • /
    • 1996
  • The structure formation by liquid-liquid(L-L) phase separation coupled with crystallization in isotactic polypropylene(i-PP). solutioos was investigated by a temperature jump experiment. A series of dialkyl phthalates with a different number of carbon atoms in the alkyl chain was used to control the interaction between polymer and solvent. Various thermal quench conditions were applied to the i-PP solutions to control systematically L-L phase separation and crystallization. A slow crystallizatina elongates the liquid droplets in the radial direction of a spherulite. A rapid crystallization under the deep quench locks-in the growth of L-L phase separation. These results indicate that the extent of L-L phase separation which exists below melting point can be successfully controlled through the proper selection of solvent and thermal conditions.

  • PDF

Performance Analysis of Phase-Locked Loop system composed of Adaptive Linear Combiner (Adaptive Linear Combiner로 구성된 Phase Locked Loop 시스템의 특성분석)

  • Bae, B.Y.;Han, B.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.143-145
    • /
    • 2005
  • A typical method to control the single-phase power converter system is to utilize the zero-crossing PLL. However, this method is vulnerable to the voltage disturbance and affects the performance of controller. This paper proposes a new single-phase PLL system that is composed of the adaptive linear combiner and the PI control. The operational principle was analyzed through theoretical approach and the performance was verified through simulations with MATLAB. The proposed PLL system shows rapidness and robustness in control under the voltage disturbances such as the sag, harmonics, and phase jump.

  • PDF

Phase Peak Ambiguity According to Illumination in White-Light Phase-Shifting Interferometry (백색광 간섭계의 위상 정점 알고리즘에서 조명에 따른 위상 정점 모호성에 관한 연구)

  • Kim, Gee-Hong;Lee, Hyung-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.85-91
    • /
    • 2008
  • White light scanning interferometry has gotten a firm position in 3D surface profile measuring field. Recently, the LCD industry gave a chance for this technology to enter into real industry fields. It is known that white-light phase-shifting algorithm give a best resolution compare to other algorithms, but there are some problems to be resolved. One of them is 300nm jump in height profile, called bat-wing effect. The main reason of this problem is an ambiguity of phase-peak detection algorithm, and some solution has been proposed, but it didn't work perfectly. In this paper, I will show the cases when these effects are occurred, and these height discrepancies will be almost disappeared when broad-band illuminators are used.

Novel Anti-islanding method using phase shift with a periodic function (주기적 위상 변동 기법을 이용한 새로운 단독운전 검출 기법)

  • Jung, Young-Seok;Choi, Jae-Ho;So, Jung-Hoon;Yu, Byung-Guy;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1153-1154
    • /
    • 2006
  • This paper proposes the optimal design method based on NDZ analysis to secure the islanding defection ability and to maintain the stability and power quality when the grid is connected. A PSiM-based model and analysis of the system is presented, specialty aimed at improving the effectiveness of phase shift anti-islanding method with frequency feedback, which causes the inverter current to be generated slightly lower or higher in frequency than the frequency of the terminal voltage. The proposed method can cause frequency jump with leading and lagging phase of output current in two line cycles. As a result, the proposed algorithm is more sensitive and reliable than the conventional phase shift method. Experimental results, on a 3 kW inverter connected to 220 V, 60 Hz utility, are discussed.

  • PDF

The Kinematic Analysis on The Stand Long Jump of Visually Impaired Persons (시각장애인의 제자리멀리뛰기 동작에 대한 운동학적 분석)

  • Oh, Cheong-Hwan;Choi, Jung-Kyu;Jeong, Ik-Su;Lee, Dong-Gin;Choi, Su-Nam;Nam, Taek-Gil
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.39-47
    • /
    • 2006
  • This study long jump action to each situation on a chessboard and section of sight disabled person and normal person through third dimension reflex analysis mechanical special quality because do comparative analysis sight disabled person's exercise ability and technology structure of action that run understand. As can do better without danger of injury map and training of exercise item that action that run is included, do offer of pabulum by purpose. Through this study, conclusion is as following. 1. Sight disabled persons' long jump average recording (121.84cm) showing normal persons' average recording (259.27cm) and much differences, show that motion of body is not big to Touch-down from Ready action. 2. Each phase body center composition(r) average speed displayed result that it is more meaning more than Each phase time required. 3. Began in line carriage without body back stretching in 1 situation on Event one are sight disabled persons. Was expose that do not bend enough knee and ankle than normal person in Event two. Was expose that body is not drooped for surface of land in Event three, and knee and ankle were expose that do not unfold easily than normal person. Was expose that do not bend enough on Touch-down knee by relation that can not grasp position of the floor in Event four. 4. When taking off, the average of horizontal speed of body center are 1.80m/sec for blind people and 3.53m/sec for the normal. In this connection, the study shows that the difference of horizontal speed between the blind and the normal is bigger than difference of vertical speed, which are 1.56m/sec for the blind and 1.98m/sec for the normal. Also, composite speed also shows us big difference between 2.41m/sec of the blind and 4.07m/sec of the normal. The speed body center of take-off was expose that average adjuster are big width of deceleration than average - beginning disabled person's average by 2.23m/sec - 1.71m/sec in the vertical speed. 5. If examine change of high and low for z Sign of right hand, change of high and low showed as is small than normal person is sight obstacle, and all hand movements are small and was expose that do not use enough reaction of body as well as in ready action.

Phase Shift Control for Series Active Voltage Quality Regulators

  • Xiao, Guochun;Teng, Guofei;Chen, Beihai;Zhang, Jixu
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.664-676
    • /
    • 2012
  • A phase shift algorithm based on the closed-loop control of dc-link voltage implemented on a series active voltage quality regulator (AVQR) is proposed in this paper. To avoid pumping-up the dc-link voltage, a general phase shift compensation strategy is applied. The relationships among the operation variables are discussed in detail, which is very important for guiding the design of both the main circuit and the control system. Then on the basis of an investigation of the dc-link voltage pumping-up from viewpoint of the active power flow, a novel phase shift control method based on the closed-loop of the dc-link voltage is proposed. This method can adjust the phase of the output voltage gradually and automatically according to the dc-link voltage variation without introducing a phase jump. The effectiveness of the proposed strategy is verified through simulations of a single-phase 5kVA prototype and laboratory experiments on both a single-phase 5kVA and a three-phase 15kVA prototype.

Fast Single-Phase All Digital Phase-Locked Loop for Grid Synchronization under Distorted Grid Conditions

  • Zhang, Peiyong;Fang, Haixia;Li, Yike;Feng, Chenhui
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1523-1535
    • /
    • 2018
  • High-performance Phase-Locked Loops (PLLs) are critical for grid synchronization in grid-tied power electronic applications. In this paper, a new single-phase All Digital Phase-Locked Loop (ADPLL) is proposed. It features fast transient response and good robustness under distorted grid conditions. It is designed for Field Programmable Gate Array (FPGA) implementation. As a result, a high sampling frequency of 1MHz can be obtained. In addition, a new OSG is adopted to track the power frequency, improve the harmonic rejection and remove the dc offset. Unlike previous methods, it avoids extra feedback loop, which results in an enlarged system bandwidth, enhanced stability and improved dynamic performance. In this case, a new parameter optimization method with consideration of loop delay is employed to achieve a fast dynamic response and guarantee accuracy. The Phase Detector (PD) and Voltage Controlled Oscillator (VCO) are realized by a Coordinate Rotation Digital Computer (CORDIC) algorithm and a Direct Digital Synthesis (DDS) block, respectively. The whole PLL system is finally produced on a FPGA. A theoretical analysis and experiments under various distorted grid conditions, including voltage sag, phase jump, frequency step, harmonics distortion, dc offset and combined disturbances, are also presented to verify the fast dynamic response and good robustness of the ADPLL.

Spinodal Phase Separation and Isothermal Crystallization Behavior in Blends of VDF/TrFE(75/25) Copolymer and Poly(1,4-butylene adipate) (I) -Spinodal Phase Separation Behavior-

  • Kim, Kap Jin;Kyu, Thein
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.188-194
    • /
    • 2003
  • Phase behavior and spinodal phase separation kinetics in binary blends of a random copolymer of vinylidene fluoride and trifluoroethylene (75/25) [P(VDF/TrFE)] and poly(l,4-butylene adipate) (PBA) have been investigated by means of optical microscopic observation and time-resolved light scattering. The blends exhibited a typical lower critical solution temperature (LCST)∼${34}^{\circ}C$ above the melting temperature of the P(VDF/TrFE) crystals over the entire blend composition range. P(VDF/TrFE) and PBA were totally miscible in the temperature gap between the melting point of P(VDF/TrFE) and the LCST. Temperature jump experiments of the 3/7 P(VDF/TrFE)/PBA blend were carried out on a light-scattering apparatus from a single-phase melt state (${180}^{\circ}C$) to a two-phase region (205∼${215}^{\circ}C$). Since the late stage of spinodal decomposition (SD) is prevalent in the 3/7 blend, SD was analyzed using a power law scheme. Self-similarity was preserved well in the late stage of SD in the 3/7 blend.

Ground Reaction Force and Muscle activity in Children with Down Syndrome during Vertical Jump (다운증후군 아동의 수직점프 동작 수행 시 지면반력과 근육활동의 규명)

  • Yu, Yeon-Joo;Lim, Bee-Oh;Kim, Suk-Bum;Nam, Ki-Jung;Choi, Bum-Kwon;Kim, Min-Hoe
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.107-115
    • /
    • 2008
  • The purpose of this study was to investigate muscle activity and vertical ground reaction force(F) in children with Down syndrome(DS) during vertical jump. Six DS and one healthy child performed vertical jump. Four muscles(Biceps femoris, Rectus femoris, Tibialis anterior & Gastrocnemius) and F were analyzed. Gastrocnemius in DS showed lower muscle activity in a propulsive phase. Impulse during 0.3sec before toe-off in DS displayed lower value than that in the healthy child. The second peak of F in DS occurred later than that in the healthy child, so DS performed landing with their knee more flexed. The first and second peak of F and loading rate to the second peak of F in DS showed lower value than those in the healthy child. Therefore, DS might have lower ability to absorb the force while landing from a vertical jump.