• Title/Summary/Keyword: phase jump

Search Result 97, Processing Time 0.026 seconds

Analysis of Kinematic Factors between Success and Failure of Free Aerial Cartwheel on the Balance Beam (평균대 한발 몸 펴 옆 공중돌기의 성패에 따른 운동학적 요인 분석)

  • Jung, Choong Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Objective: The purpose of this study was to determine the factors of successful and unsuccessful movements through the analysis of kinematics and muscle activity of the Free Aerial Cartwheel on the balance beam. Method: Subjects (Age: 22.8 ± 2.4 yrs., Height: 158.7 ± 5.0 cm, Body mass: 54.1 ± 6.4 kg, Career: 13 ± 2.4 yrs.) who were currently active as female gymnasts participated in the study. They had no history of surgical treatment within 3 months. Subject criteria included more than 10 years of professional experience in college and professional level of gymnastics and the ability to conduct the Free Aerial Cartwheel on the Balance Beam. Each subject performed 10 times of Free Aerial Cartwheel on the balance beam. One successful trial and one unsuccessful trial (failure) among 10 trials were selected for the comparison. Results: It was found that longer time required in case of unsuccessful trial when performing the Free Aerial Cartwheel on the balance beam compared with successful trial. It is expected to be the result of movement in the last landing section (i.e. phase 5). In addition, it was found that the center of gravity of the body descends at a high speed to perform the jump (i.e. phase 2) in order to obtain a sufficient jumping height when the movement is successful while the knee joint is rapidly extended to perform a jump when movement fails. In the single landing section after the jump (i.e. phase 4), if the ankle joint rapidly dorsiflexed after take-off and the hip joint rapidly flexed, so landing was not successful. Conversely, in a successful landing movement, muscle activity of the biceps femoris was greatly activated resulting no shaking in the last landing section (i.e. phase 5). Conclusion: In order to succeed in this movement, it is necessary to perform a strong jump after rapidly descending the center of gravity of the body using the force of the biceps femoris muscle. Further improvement of the skills on the balance beam requires the analysis of the game-like situation with continuous research on kinematic and kinematic analysis of various techniques, jumps, turns, etc.

Change in Countermovement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics (반동을 이용한 수직 점프 시 높이 변화에 따른 운동역학 및 상변화 시점에서의 지면반력 벡터 변화)

  • Kim, Seyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.277-283
    • /
    • 2017
  • In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the countermovement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the countermovement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the countermovement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

Evaluation of Daily Jump Compensation Methods for GPS Carrier Phase Data

  • Lee, Young Kyu;Yang, Sung-Hoon;Lee, Chang Bok;Lee, Jong Koo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2015
  • In this paper, we described the timing-offset comparison results between various daily jump compensation methods for GPS carrier phase (CP) measurement data. For the performance comparison, we used about 70 days GPS measurement data obtained from two GPS geodetic receivers which share the reference 1 PPS and RF signals and closely located in each other within a few meters. From the experiment results, the followings were observed. First, daily jumps existed in CP measurements depend on not only the environment but also the receiver which will make a full compensation be very hard or impossible. Second, clock bias can be occurred in the case of using a simple compensation with accumulation of daily jumps but it could be used in a short-period frequency comparison campaign (less than about 7 days) despite of its drawback.

Noise Elimination of Speckle Fringe Phasemap (반점 간섭무늬 위상단면도의 잡음제거)

  • 조재완;홍석경;백성훈;김철중
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.217-224
    • /
    • 1994
  • The combination of both phase-shifting convolution and 2-bit quantization smoothing filter was used to reduce speckle noise from saw-tooth speckle fringes phase map, obtained in phase-shifting speckle interferometer. The phase-shifting convolution showed the noise reduction capability of speckle fringe without destroying edge information across 271 jump. Also, it was shown that the 2-bit quantization smoothing filter was superior to average, low-pass filter and median filter in speeding up smoothing process and enhancing SIN ratio. Finally, a path dependent unwrapping algorithm was used to unwrap a noise reduced 271 modulo speckle phasemap. semap.

  • PDF

Differences in EMG of Trunk and Lower Limb According to Attack Method and Phase During Volleyball

  • Jeong, Hwan Jong;Baek, Gwang Eon;Kim, Ki Hong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.143-151
    • /
    • 2021
  • The purpose of our study is to confirm the trend of the muscle activity of the trunk and lower limb muscles by the attack method and phase during volleyball exercise. To achieve this purpose, spike serve and spike were conducted for 9 male middle school students, and at that time, it was divided into four phase, such as run jump, take off, impact, and follow, and the rectus abdominis, erector spine, and left rectus femoris, left biceps femoris, left anterior tibialis, left gastrocnemius midialis, right rectus femoris, right biceps femoris, right anterior tibialis, right gastrocnemius midialis, were examined. Spike serve and spike were each performed three times, and randomly cross-allocated to extract accurate data. We was no difference in all muscles according to the attack method, and the muscle activity of the rectus abdominis was highest in the impact phase and the muscle activity of the vertebral spine muscle was highest in the close-up phase. In addition, all of the measured left and right lower limb muscles showed the highest muscle activity between the assisted devices. As a result, We found out that regardless of the method of spike serve and spike, the lower limbs in the run-up phase for a high jump, the vertebrae in the take off phase, the preparation phase for hitting the ball strongly, and in the impact phase at the moment of hitting the ball. It can be seen that it exerts the greatest power in the rectus abdominis.

The analysis of lower extremities injury on depth jump (Depth Jump 시 하지 관절 상해에 관한 운동역학적 분석)

  • So, Jae-Moo;Kim, Yoon-Ji;Lee, Jong-Hee;Seo, Jin-Hee;Chung, Yeon-Ok;Kim, Koang-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.127-142
    • /
    • 2005
  • The purpose of this study was to analysis biomechanics of the lower extremities injury the heights(40cm, 60cm, 80cm) of jump box as performed depth jump motion by 6 females aerobic athletes and 6 non-experience females students. The event of depth jump were set to be drop, landing and jump. The depth jump motions on the force plate were filmed using a digital video cameras, and data were collected through the cinematography and force plate. On the basis of the results analyzed, the conclusions were drawn as follows: 1. The landing time of skill group was shorter than unskill group at 40cm, 60cm drop height during drop-landing-jump phase especially. The landing time of 60cm drop height was significant between two group(p<.05). 2. The peak GRF of sagittal and frontaI direction following drop height improve was variety pattern and the peak vertical force of 40cm drop height was significantly(p<.05). 3. The magnitude of peak passive force was not increase to change the drop height. 4. The peak passive forces was significant at 40cm drop height between two groups(p<.05)

General Derivation of Two-Fluid Model (2상 유동 모델의 일반적인 유도)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 1984
  • General time-volume averaged conservation equations and jump conditions for two-phase flows are derived here. The time-averaged equations for a single phase region in two-phase flow are obtained from local instant balance equations by a technique often used for single phase turbulent flow equations. The results obtained by integrating the time averaged equations over a flow volume are spatially averaged twice; first, they are averaged over a single phase region of the k-th phase and then averaged over the total volume of the k-th phase, in a flow volume. The mass, momentum, and energy conservation equations are obtained from the general time-volume averaged equations. The advantages of the present model are explained by comparing it with Ishii's model (1) and Banerjee's model (2). Finally, the assumptions and approximate terms of the equations of the THERMIT-6S are clarified.

  • PDF

Kinematic Analysis of Men's Triple Jump at IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 남자 세단뛰기 경기의 운동학적 분석)

  • Woo, Sang-Yeon;Seo, Jung-Suk;Kim, Ho-Mook;Kim, Yong-Woon;Choi, Sung-Bum;Nam, Ki-Jeong
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.611-619
    • /
    • 2011
  • The purpose of this study was to analyze the kinematics of the men's triple jump at the 2011 Daegu World Championships by comparing the results to those at the 2009 Berlin World Championships. The kinematic data were gathered from two steps before take off to the landing using a seven panorama system, and these data were divided into 3 phases for 8 participants. The average jump for the finalists was longer in the Daegu championships (17.46 m) than in the Berlin championships (17.28 m). The longest jump record was increased by 23 cm. The step was the longest at 36% of the total distance, followed by the hop at 30% and the jump at 34%. The first and third phases were substantially longer than the second phase (the step). The horizontal speed at take-off increased in the order hop, step, and jump. Overall, in comparison with the results from Berlin, the horizontal velocity increased, the vertical velocity decreased, and the landing angle decreased.

Analysis of the Differences of the Shock Absorption Strategy between Drop-Landing and Countermovement-Jump (드롭 착지와 착지 후 점프 시 충격흡수 기전의 차이 분석)

  • Cho, Joon-Haeng;Kim, Kyoung-Hun;Koh, Young-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.379-386
    • /
    • 2012
  • The aim of this study was to investigate and identify the differences in lower extremity energy dissipation strategies between drop-landing and countermovement-jump maneuvers. Fourteen recreational athletes(Age : $23.3{\pm}2.1years$, Height : $172.3{\pm}4.0cm$, Weight : $69.2{\pm}4.7kg$) were recruited and instructed to perform drop-landing from 45 cm height and countermovement-jump from 45 cm to 20 cm height. The landing phase was taken as the time between initial contact and peak knee flexion. A motion-capture system consisting of eight infra-red cameras was employed to collect kinematics data at a sampling rate of 200 Hz and a force-plate was used to collect GRF data at a sampling rate of 2000 Hz. Paired t-test was performed to determine the difference in kinematics and kinetics variables between each task. During the countermovement-jump task, all of lower extremity joint ROM and the hip joint eccentric moment were decreased and the ankle joint plantarflexion moment was increased than drop-landing task. In the eccentric work during countermovement-jump task, the ankle joint displayed greater while knee and hip joint showed lesser than drop-landing. Therefore, the knee joint acted as the key energy dissipater during drop-landing while the ankle joint contributed the most energy dissipation during countermovement-jump. Our findings collectively indicated that different energy dissipation strategies were adopted for drop-landing and countermovement-jump.

3-Phase Power Quality Disturbance Generator with Phase Jump Function (위상급변 기능을 갖는 3상 전력품질 외란발생기)

  • Lee, B.C.;Choi, S.H.;Paeng, S.H.;Park, S.D.;Choi, N.S.;Kim, I.D.;Chun, T.W.;Kim, H.G.;Nho, E.C.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.463-470
    • /
    • 2006
  • This paper deals with a new 3-phase power quality disturbance generator. The proposed generator can provide phase jump as well as voltage sag, swell, outage, unbalance, and over and under voltage. The operating principle of the generator is described in each mode of disturbance. The magnitude of the phase jump is analysed and it is found that the magnitude is the function of the turn-ratios of the transformers consisting the generator. The scheme has simple structure compared with the conventional one, and the major components of the proposed scheme are SCR thyristor and transformer, which guarantees high reliability and cost-effective implementation of the generator. Furthermore, high efficiency can be obtained because there is no PWM switching of the semiconductor devices, and it is easy to control the system. Simulations are carried out to confirm the operation in each disturbance mode, and experiments has been done with 5kVA power rating. The usefulness of the proposed scheme is verified through simulation and experimental results. It is expected that the scheme can be applied to the performance test of the custom power devices such as UPS, DVR, DSTATCOM, and SSTS with cost-effective system.