• Title/Summary/Keyword: phase interpolation

Search Result 115, Processing Time 0.026 seconds

Low Coherence Interferometer for Measurement of Path Length Errors in Arrayed-Waveguide Grating (Arrayed-Waveguide Grating의 경로 오차 측정을 위한 저 간섭 광원 간섭계)

  • Song, Young-Ki;Heo, Nam-Chun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.539-546
    • /
    • 2004
  • An improved low coherence interferometer system and a new analysis method for the accurate measurement of the optical path difference error of an AWG (Arrayed-Waveguide Grating) are described. The use of software simplifies the experimental setup by eliminating the hardware (clock generator). In addition, the actual distances between the peak positions of the adjacent interference signals are calculated using interpolation methods. The wavelength transmission characteristics of the AWG are calculated assuming the measured phase errors. The calculated AWG characteristic is quite similar to the actual measurement result, confirming accuracy of the proposed measurement setup.

Numerical Simulation of 3D Free-Surface Flows by Using CIP-based and FV-based Methods

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.136-143
    • /
    • 2011
  • In this paper, three-dimensional free-surface flows are simulated by using two different numerical methods, the constrained interpolation profile (CIP)-based and finite volume (FV)-based methods. In the CIP-based method, the governing equations are solved on stationary staggered Cartesian grids by a finite difference method, and an immersed boundary technique is applied to deal with wave-body interactions. In the FV-based method, the governing equations are solved by applying collocated finite volume discretization, and body-fitted meshes are used. A free-surface boundary is considered as the interface of the multi-phase flow with air and water, and a volumeof-fluid (VOF) approach is applied to trace the free surface. Among many variations of the VOF-type method, the tangent of hyperbola for interface capturing (THINC) and the compressive interface capturing scheme for arbitrary meshes (CICSAM) techniques are used in the CIP-based method and FV-based method, respectively. Numerical simulations have been carried out for dam-breaking and wave-body interaction problems. The computational results of the two methods are compared with experimental data and their differences are observed.

A Study of the Three-Dimension Acoustic Field Analysis using the Type-M CIP Method (M형 CIP법을 이용한 3차원 음장해석에 관한 연구)

  • Lee, Chai-Bong;Oh, Sung-Qwan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.220-224
    • /
    • 2009
  • The authors have investigated the acoustic field analysis using the Constrained Interpolation Profile(CIP) Method recently proposed by Yabe. The present study has examined the calculation accuracy of the three-dimensional (3-D) acoustic field analysis using the type-M CIP method. In this paper we show phase error of type-M CIP method and the dependence on the wave-propagation direction in the type-M CIP acoustic field analysis, and then demonstrate that it is effective for acoustic field analysis, compared with the FDTD and the exact solution. We show the dependency on the propagation angle in the CIP acoustic field analysis.

  • PDF

Depth Migration for Gas Hydrate Data of the East Sea (동해 가스 하이드레이트 자료 깊이영역 구조보정)

  • Jang, Seong-Hyung;Yoo, Dong-Gun;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.382-385
    • /
    • 2006
  • 한국지질자원연구원은 1997년부터 새로운 에너지 자원으로 활용 가능성을 포함하고 있는 가스 하이드레이트를 조사하기 위해 동해 일원에서 탄성파탐사를 실시하고 있다. 탄성파 반사 자료로부터 가스 하이드레이트 부존여부를 확인하는 방법은 해저면과 평행하면서 위상이 반대로 나타나는 고진폭 반사파 BSR (Bottom Simulating Reflection)과 BSR상부에서의 진폭감소, 하부에서 진폭증가와 구간속도 감소 등을 들 수 있다. 여기에서는 가스 하이드레이트 탐사자료에 대한 일반자료처리와 함께 BSR을 포함하고 있는 탄성파 반사자료에 대해 코드 병렬화된 PSPI를 이용하여 깊이영역 구조보정을 실시하였다. 고용량 탐사자료로 구성된 탄성파 반사자료에 깊이영역 구조보정을 적용하기 위해서는 고성능 컴퓨터와 병렬처리 기술이 필요하다. PSPI(Phase Shift Plus Interpolation)법은 적은 컴퓨터 계산량과 효율성 그리고 주파수 영역에서 구조적으로 병렬화가 용이한 특성을 지니고 있어 구조보정에 많이 이용되고 있다. 여기에서는 MPI(Message Passing Interface)-LAM을 이용하여 병렬코드화된 PSPI를 개발하고 인공합성모델과 동해 가스 하이드레이트 깊이영역 구조보정에 적응하였다.

  • PDF

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

A novel aerodynamic vibration and fuzzy numerical analysis

  • Timothy Chen;Yahui Meng;Ruei-Yuan Wang;ZY Chen
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.161-170
    • /
    • 2024
  • In recent years, there have been an increasing number of experimental studies showing the need to include robustness criteria in the design process to develop complex active control designs for practical implementation. The paper investigates the crosswind aerodynamic parameters after the blocking phase of a two-dimensional square cross-section structure by measuring the response in wind tunnel tests under light wind flow conditions. To improve the accuracy of the results, the interpolation of the experimental curves in the time domain and the analytical responses were numerically optimized to finalize the results. Due to this combined effect, the three aerodynamic parameters decrease with increasing wind speed and asymptotically affect the upper branch constants. This means that the aerodynamic parameters along the density distribution are minimal. Taylor series are utilized to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial function for analyzing the aerodynamic parameters and numerical simulations. Due to it will yield intricate terms to ensure stability criterion, therefore we aim to avoid kinds issues by proposing a polynomial homogeneous framework and utilizing Euler's functions for homogeneous systems. Finally, we solve the problem of stabilization under the consideration by SOS (sum of squares) and assign its fuzzy controller based on the feasibility of demonstration of a nonlinear system as an example.

Development of Simplified Immersed Boundary Method for Analysis of Movable Structures (가동물체형 구조물 해석을 위한 Simplified Immersed Boundary법의 개발)

  • Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.93-100
    • /
    • 2021
  • Since the IB (Immersed Boundary) method, which can perform coupling analysis with objects and fluids having an impermeable boundary of arbitrary shape on a fixed grid system, has been developed, the IB method in various CFD models is increasing. The representative IB methods are the directing-forcing method and the ghost cell method. The directing-forcing type method numerically satisfies the boundary condition from the fluid force calculated at the boundary surface of the structure, and the ghost-cell type method is a computational method that satisfies the boundary condition through interpolation by placing a virtual cell inside the obstacle. These IB methods have a disadvantage in that the computational algorithm is complex. In this study, the simplified immersed boundary (SIB) method enables the analysis of temporary structures on a fixed grid system and is easy to expand to three proposed dimensions. The SIB method proposed in this study is based on a one-field model for immiscible two-phase fluid that assumes that the density function of each phase moves with the center of local mass. In addition, the volume-weighted average method using the density function of the solid was applied to handle moving solid structures, and the CIP method was applied to the advection calculation to prevent numerical diffusion. To examine the analysis performance of the proposed SIB method, a numerical simulation was performed on an object falling to the free water surface. The numerical analysis result reproduced the object falling to the free water surface well.

Correction of Accelerogram in Frequency Domain (주파수영역에서의 가속도 기록 보정)

  • Park, Chang Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.71-79
    • /
    • 1992
  • In general, the accelerogram of earthquake ground motion or the accelerogram obtained from dynamic tests contain various errors. In these errors of the accelerograms, there are instrumental errors(magnitude and phase distortion) due to the response characteristics of accelerometer and the digitizing error concentrated in low and high frequency components and random errors. Then, these errors may be detrimental to the results of data processing and dynamic analysis. An efficient method which can correct the errors of the accelerogram is proposed in this study. The correction of errors can be accomplished through four steps as followes ; 1) using an interpolation method a data form appropriate to the error correction is prepared, 2) low and high frequency errors of the accelerogram are removed by band-pass filter between prescribed frequency limits, 3) instrumental errors are corrected using dynamic equilibrium equation of the accelerometer, 4) velocity and displacement are obtained by integrating corrected accelerogram. Presently, infinite impulse response(IIR) filter and finite impulse response (FIR) filter are generally used as band-pass filter. In the proposed error correction procedure, the deficiencies of FIR filter and IIR filter are reduced and, using the properties of the differentiation and the integration of Fourier transform, the accuracy of instrument correction and integration is improved.

  • PDF

Least Square Channel Estimation Scheme of OFDM System using Fuzzy Inference Method (퍼지 추론법을 적용한 OFDM 시스템의 LS(Least Square) 채널추정 기법)

  • Kim, Nam;Choi, Jung-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.84-90
    • /
    • 2009
  • In this paper, the new channel estimation was proposed that have the low complexity and high performance using Fuzzy inference method uses recently from various field for estimation about uncertainty in channel estimation of OFDM. Proposed method is channel estimation performance improve, calculation and interpolation for statistics character of channel using the pilot before LS channel estimation by Fuzzy inference method. Simulation result in QPSK proposed channel estimation method shows the enhancement of 5.5dB compared to the LS channel estimation and the deterioration of 1.3dB compared to the MMSE channel estimation in mean square error point $10^{-3}$. symbol error rate shows similarity performance the MMSE $10^{-1.96}$, proposed channel estimation $10^{-1.93}$ and enhancement of $10^{-0.35}$ compared to the LS channel estimation in signal to noise ratio point 20dB.

The Three-Dimensional Acoustic Field Analysis using the Type C CIP Method (C형 CIP법을 이용한 3차원 음장해석)

  • Lee, Chai-Bong;Oh, Sung-Qwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.125-132
    • /
    • 2010
  • The authors have investigated the acoustic field analysis using the Constrained Interpolation Profile(CIP) Method recently proposed by Yabe. This study has examined the calculation accuracy of the three-dimensional(3-D) acoustic field analysis using the type C CIP method. In this paper we show phase error of type C CIP method and the dependence on the wave-propagation direction in the type C CIP acoustic field analysis, and then demonstrate that it gives less-diffusive results than conventional analysis. Moreover, in comparison between type C-1 CIP, type C-2 CIP, type M CIP and FDTD, reports the memory requirements and calculation time of each method.