• Title/Summary/Keyword: phase field design method

Search Result 172, Processing Time 0.024 seconds

Topology Optimization of Beam Splitter for Multi-Beam Forming Based on the Phase Field Design Method (페이즈 필드 설계법 기반의 다중 빔 형성을 위한 빔 분배기 위상최적설계)

  • Kim, Han-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this paper, a systematic beam splitter design for multi-beam forming is proposed. The objective of this research is to a design beam splitter that splits and focuses scattering microwaves into intense beams in multiple directions. It is difficult to split multi-beam to non-specific directions with theoretical approaches. Therefore, instead of using transformation optics(TO), which is a widely used process for controlling electromagnetic wave propagation, we used a systematic design process called the phase field design method to obtain an optimal topological structure of beam splitter. The objective function is to maximize the norm of electric field of the target areas of each direction. To avoid island structure and obtain the structure in one body, volume constraint is added to the optimization problem by using augmented Lagrangian. Target frequency is set to X-band 10GHz. The optimal beam splitter performed well in multi-beam forming and the transported electric energy of target areas improved. A frequency dependency test was conducted in the X-band to determine effective frequency range.

Calculation and Mitigation of Magnetic Field Produced by Straight Line-Conductor with Finite Length (유한장 직선도체에 의한 자계의 계산 및 감소대책)

  • Kang, Dae-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.57-67
    • /
    • 2011
  • Purpose of this study is to find the mitigation method of magnetic field by finite length multi-conductors such as indoor distribution lines and to be applicable to design of the distribution lines. For this purpose, exact formula about the components $B_x$, $B_y$, $B_z$ of magnetic field need in case of straight line-conductor with finite length forward any direction. In this study simple formula of the components were deduced and by using these formula magnetic fields for various models of line-configurations were calculated. And also a calculation method of induced currents in conductive shield was presented and using this method, programing of calculation is relatively easy and calculation time is short. The magnetic field after cancellation by these induced currents was calculated. All of calculations were performed by Matlab 7.0 programs. Through the calculation results it could be obtained followings for the mitigation of magnetic fields. The separation between conductors ought to be smaller than smaller as possible. In case of 3-phase, delta configuration is more effective than flat configuration. In case of 3-phase, unbalanced currents ought to be reduced as possible.. In case of more than two circuits of 3-phase, adequate locations of each phase-conductor such as rotating configuration of 3-phase conductors are more effective. The magnetic shielding effect of the conductive shielding sheet is very high.

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

A Study on the Environmental Improvement in the Interior Construction Fields with the check-list (실내건축의 작업환경 개선을 위한 기본적 관리방안에 관한 연구)

  • 이용의
    • Korean Institute of Interior Design Journal
    • /
    • no.9
    • /
    • pp.10-17
    • /
    • 1996
  • With the ever-increasing important of high-speed information in society as we move towards the 21 st century. Interior design and it's working condition has been changed a great deal included a sort of each special character and make a difference against the others. It used to be find a great poles asunder of worker's safety and project quality according to the environmental dimension of interior construction field as if they should be a pleasantness or poor condition. This research aimed to improvement of environmental construction field of interior with construction engineers and particular interior labors in 4 phases as : ⅠThe preparatory phase : -Secure a Budget, Environmental safety supervisor -Fix of Design quality, Construction period. -Choice of Construction method, Sub constructing Ⅱ. Starting work phase ; -Capacity , Safety of temporary power line. -Carriage, Stock of Material -Safety of Electronic tools, -Personal protector. Ⅲ. Working period ; -Ventilation, I illumination of working place. -Measurement of environmental working condition Ⅳ.Finish working phase ; -Analysis of measurement data. -Evaluation and making up for the weak point. -Keeping data.

  • PDF

Development of a novel reconstruction method for two-phase flow CT with improved simulated annealing algorithm

  • Yan, Mingfei;Hu, Huasi;Hu, Guang;Liu, Bin;He, Chao;Yi, Qiang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1304-1310
    • /
    • 2021
  • Two-phase flow, especially gas-liquid two-phase flow, has a wide application in industrial field. The diagnosis of two-phase flow parameters, which directly determine the flow and heat transfer characteristics, plays an important role in providing the design reference and ensuring the security of online operation of two-phase flow system. Computer tomography (CT) is a good way to diagnose such parameters with imaging method. This paper has proposed a novel image reconstruction method for thermal neutron CT of two-phase flow with improved simulated annealing (ISA) algorithm, which makes full use of the prior information of two-phase flow and the advantage of stochastic searching algorithm. The reconstruction results demonstrate that its reconstruction accuracy is much higher than that of the reconstruction algorithm based on weighted total difference minimization with soft-threshold filtering (WTDM-STF). The proposed method can also be applied to other types of two-phase flow CT modalities (such as X(𝛄)-ray, capacitance, resistance and ultrasound).

High Efficiency Two-Phase Interleaved Buck Converter with Coupled Inductor Design (커플드 인덕터를 적용한 고효율 2상 인터리브드 벅 컨버터 설계)

  • Kang, Hyunji;Kim, Jinwoo;Lee, Sungmin;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.350-357
    • /
    • 2020
  • This study presents the design of an 18 kW two-phase interleaved buck converter that uses a coupled inductor for an electric vehicle rapid charger. The designs of a two-phase coupled inductor for current ripple and physical size reduction and a two-phase interleaved buck converter based on silicon carbide metal - oxide - semiconductor field-effect transistor for high efficiency were described in detail. The operating principle of the two-phase interleaved buck converter was analyzed, and the coupled inductor was investigated using a magnetized equivalent circuit. Simulation and experiments were conducted to verify the validity of the proposed two-phase interleaved buck converter, and the theoretical design method and experimental results were confirmed.

Data Processing Method of Radar Processor Unit Test Equipment (레이다처리장치 시험장비의 데이터 처리방안)

  • Lee, Mincheol;Kim, Yong-min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.767-775
    • /
    • 2018
  • To develop and check a Radar Processor Unit, checking the function and performance of the requirement is very important factor in developing Radar. General methods for verifying the Radar is simulation test, environment linkage test and field operation test, firstly, in case of requirement analysis phase, verify Radar algorithm and design by using mathematical method based simulation test method, and secondly, in case of unit test and integrated test phase, Test Equipment is set to simulate radar environment in the lab to verify radar function and performance. Lastly, field operation test phase is carried out to confirm the function and performance after it is mounted on the actual equipment. To successfully develop Radar Processor Unit, using the method of field operation test method after sufficient test cases are tested in radar environmental interlocking method in order to save cost and testing period and because of this reason, development of the Radar Processor Unit Test Equipment is becoming very important factor. In this paper, we introduce the concept of test equipment development and important factors in test equipment, which are target simulation, data processing and device interlocking.

Design for ILS in Ammunition Development applying QFD Method (QFD를 활용한 탄약 ILS 효율화 방안 연구)

  • Lee, Seung-Mok;Park, Young-Won
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • This paper proposes an effective method on the DFILS(Design for Integrated Logistics Support) in ammunition development applying QFD(Quality Function Deployment) method. The goal of this research is to define the Design for ILS approach at the start of the ammunition development and to yield a set of reusable requirements. Based on 000mm High-Explosive(Warship ammunition) development work, a QFD software tool, CUPID, was used to analyze and define the field force's requirements. Additionally, a set of reusable requirements are identified and defined for use during the Design for ILS development phase in the next-generation ammunition development process. These set of requirements that consider both the priority and importance of the VOC(Voice of Customer) will contribute to the early phase of the ammunition development to implement the Design for ILS specialty engineering effort.

  • PDF

Design Optimization of Moving-Coil Type Linear Actuator Using Level Set Method and Phase-Field Model (레벨셋법과 페이즈 필드 모델을 이용한 가동코일형 리니어 액추에이터 최적설계)

  • Lim, Sung-Hoon;Oh, Se-Ahn;Min, Seung-Jae;Hong, Jung-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1223-1228
    • /
    • 2011
  • A moving-coil type linear actuator has been widely used in the system reciprocating short stroke because of its several advantages, such as the structural simplicity, low weight and a fast control response speed. This paper presents a design approach for improving the actuating performance with a clear expression of optimal configuration represented by a level set function. The optimization problem is formulated to minimize the variation of magnetic force at every moving displacement of the mover for fast and easy control. To consider the manufacturability of actuator, the concept of phase-field model is incorporated to control the complexity of structural boundaries. To verify the usefulness of the proposed method, the core design example of cylindrical linear actuator is performed.

Field Balancing Process of High Speed Spindle Using Laser Displacer (레이저 변위계를 이용한 고속 회전스핀들의 필드 발란싱 기법)

  • Lim, Sunghyun;Park, Yeong-il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.114-120
    • /
    • 2017
  • In recent years, applications of high speed rotating bodies have diversified. It is necessary for a device rotating at high speed to be balanced to minimize vibration. It is necessary to reduce the unbalancing factor to evenly wind the yarn. In this study, we also attempted to devise a technique to minimize the unbalance that occurs while assembling the components of spindles and to simplify the balancing procedure in the field. To balance the spindle, the vibration of the rotating spindle was measured using a laser displacement meter. We also performed balancing using the influence coefficient method by considering the phase.