• Title/Summary/Keyword: phase field design method

Search Result 173, Processing Time 0.028 seconds

Preliminary numerical study of single bubble dynamics in swirl flow using volume of fluid method

  • Li, Zhongchun;Qiu, Zhifang;Du, Sijia;Ding, Shuhua;Bao, Hui;Song, Xiaoming;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1119-1126
    • /
    • 2021
  • Spacer grid with mixing vane had been widely used in nuclear reactor core. One of the main feather of spacer grid with mixing vane was that strong swirl flow was formed after the spacer grid. The swirl flow not only changed the bubble generation in the near wall field, but also affected the bubble behaviors in the center region of the subchannel. The interaction between bubble and the swirl flow was one of the basic phenomena for the two phase flow modeling in fuel assembly. To obatin better understanding on the bubble behaviors in swirl flow, full three dimension numerical simulations were conducted in the present paper. The swirl flow was assumed in the cylindral calculation domain. The bubble interface was captured by Volume Of Fluid (VOF) method. The properties of saturated water and steam at different pressure were applied in the simulation. The bubble trajectory, motion, shape and force were obtained based on the bubble parameters captured by VOF. The simulation cases in the present study included single bubble with different size, at different angular velocity conditions and at different pressure conditions. The results indicated that bubble migrated to the center in swirl flow with spiral motion type. The lateral migration was mainly related to shear stress magnitude and bubble size. The bubble moved toward the center with high velocity when the swirl magnitude was high. The largest bubble had the highest lateral migration velocity in the present study range. The effect of pressure was small when bubble size was the same. The prelimenery simulation result would be beneficial for better understanding complex two phase flow phenomena in fuel assembly with spacer grid.

Numerical Analysis on the Low Noise Designs of Savonius Wind Turbines by Inducing Phase Difference in Vortex Shedding (와류이탈 위상차를 이용한 사보니우스형 풍력터빈의 소음 저감 설계에 관한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.269-274
    • /
    • 2014
  • In this study, low noise designs for a Savonius wind turbine were numerically investigated. As was reported in our previous study, the harmonic components with a fundamental frequency higher than the BPF were identified as being dominant in the noise spectrum of a Savonius wind turbine, and these components were a result of vortex shedding. On a basis of this observation, an S-shaped blade tip is proposed as a means of reducing the noise generated by small vertical(Savonius) wind turbines. This blade induces phase differences in the shedding vortices from the blades, and thus reduces the noise from the wind turbine. The aerodynamic noise characteristics of the conventional and "S-shaped" Savonius turbines were investigated by using the Hybrid CAA method where the flow field around the turbine is computed using the CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow field data. The degree of noise reduction resulting from the proposed design and its reduction mechanism were confirmed by comparing the predicted noise spectrum of these turbines and the flow characteristics around them.

A Study of Web Hacking Response Procedures Model based on Diagnosis Studies for Cross-Site Scripting (XSS)Process (Cross-Site Scripting(XSS) 프로세스 진단을 기반으로 한 웹 해킹 대응절차 모델 연구)

  • Noh, SiChoon
    • Convergence Security Journal
    • /
    • v.13 no.6
    • /
    • pp.83-89
    • /
    • 2013
  • When applying web hacking techniques and methods it needs to configure the integrated step-by-step and run an information security. Web hackings rely upon only one way to respond to any security holes that can cause a lot. In this study the diagnostic process of cross-site scripting attacks and web hacking response procedures are designed. Response system is a framework for configuring and running a step-by-step information security. Step response model of the structure of the system design phase, measures, operational step, the steps in the method used. It is designed to secure efficiency of design phase of the system development life cycle, and combines the way in secure coding. In the use user's step, the security implementation tasks to organize the details. The methodology to be applied to the practice field if necessary, a comprehensive approach in the field can be used as a model methodology.

Study on minimizing Extremely-Low-Frequency magnetic fields around power cables and busbars (송전선과 분전반 모선으로부터 발생하는 극저주파 자기장 저감을 위한 연구)

  • Lou, Ming;Jeung, Gi-Woo;Kim, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.88-90
    • /
    • 2009
  • Extremely-Low-Frequency(ELF) magnetic fields are generated around power cables and bus bars in power systems. Such the stray fields may cause disturbances to nearby electronic apparatus and affect even human health. In order to seeking out a proper way to reducing the fields, the first thing to do is to accurately predict field distribution around analysis models of interest. Then, optimization techniques should be applied for finding a more improved design than the initial one. To achieve this goal, commercial electromagnetic software, MagNet, is combined with evolution strategy algorithm. For verification of the proposed method, three-phase power line cables and busbar systems have been tested.

  • PDF

A Study on the improvement method for Idea from the design VE using ASIT (ASIT 기법을 활용한 설계VE 아이디어 개선방안에 관한 연구)

  • Lee, Gun;Go, Seong-Seok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.1023-1028
    • /
    • 2007
  • It is the most important thing of the overall VE that we create inventive ideas from idea phase in the design VE. However, it is hard that it take a long time and create a superior idea using Brainstorming. And, it was real to lodge an alternative plan proposed on the idea thinking phase, it is true that an alternative plan of existing simply costdown apply to a change and insert isn't different from an inventive idea deduction. Also creating alternative idea, many expert hold on to only his field and it was exposed a limit depend on a team's experience or intuition than technical solution. In this study, we analyzed the problem of the present design VE processing and analyzed the problem through a survey to an expert, and then we'll suggest a possibility for an efficient design VE.

  • PDF

Forecasting tunnel path geology using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ali, Hunar Farid Hama;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.359-374
    • /
    • 2022
  • Geology conditions are crucial in decision-making during the planning and design phase of a tunnel project. Estimation of the geology conditions of road tunnels is subject to significant uncertainties. In this work, the effectiveness of a novel regression method in estimating geological or geotechnical parameters of road tunnel projects was explored. This method, called Gaussian process regression (GPR), formulates the learning of the regressor within a Bayesian framework. The GPR model was trained with data of old tunnel projects. To verify its feasibility, the GPR technique was applied to a road tunnel to predict the state of three geological/geomechanical parameters of Rock Mass Rating (RMR), Rock Structure Rating (RSR) and Q-value. Finally, in order to validate the GPR approach, the forecasted results were compared to the field-observed results. From this comparison, it was concluded that, the GPR is presented very good predictions. The R-squared values between the predicted results of the GPR vs. field-observed results for the RMR, RSR and Q-value were obtained equal to 0.8581, 0.8148 and 0.8788, respectively.

Developed a BLDC Motor for Driving a Commercial Vehicle Fan (상용차 팬 구동용 BLDC 모터 개발)

  • Shin, Dong-Hwa;Lee, Byung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.533-540
    • /
    • 2022
  • This paper is the research result of designing and developing a BLDC motor for driving a condenser fan, which is widely used in air conditioners of commercial vehicles and specially equipped vehicles, and produced with a target value. The design of the motor was carried out in the order of designing the electric and magnetic circuits after determining the motor specifications. The process was repeated with different set values until the designed target condition was satisfied, and the electric and magnetic field distributions were made to be equal by reflecting the characteristics of the material. As a structural feature of the motor, it is a rotating field type composed of multipoles, and has a structure in which a permanent magnet is attached to the surface of the rotor. The manufactured BLDC motor is a 3-phase square wave driving method, with a rated voltage of 24 [V], a rotational speed of 2,500 [rpm], a rated current of 10 [A], and a power consumption of 180 [W]. A microcontroller for driving and controlling the motor was also manufactured.

Numerical Analysis for Three-Dimensional Tsunami Force Acting on Multi-Onshore Structures (육상구조물군에 작용하는 지진해일파력의 3차원수치해석)

  • Lee, Kwang Ho;Ha, Sun Wook;Lee, Kui Seop;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.175-185
    • /
    • 2011
  • This study investigates tsunami force acting on a group of onshore structures numerically by using three-dimensional one-field model for immiscible multi-phase flows, which is based on Navier-Stokes solver. In particular, we studied on the characteristics of tsunami with respect to the arrangement of onshore structures and the distance from seawall trough numerical experiments. For validation of the numerical method used in this study to calculate tsunami force, numerical results for tsunami force on the structures in coastal area are compared with available experimental data. Furthermore, a detail study on the efficiency of the numerical method is performed for the estimation of tsunami force based on the hydrostatic and hydrodynamic methods in which the numerical results are used. The obtained results are compared to the previous experimental one and design criteria. Considering both experimental results and numerical analysis results, semi-empirical formula by regression analysis is proposed. As a result, it was confirmed that the numerical analysis is effective to estimate on tsunami force acting on onshore structures.

Estimation of Bearing Capacity for In-Situ Top-Base Method by Field Experimental Plate Load Test (현장평판재하시험에 의한 현장타설형 팽이말뚝기초의 지지력산정)

  • Shin, Eun-Chul;Ahn, Min-Hye
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The problems like a deterioration of loading bearing capacity, an exaggeration of settlement and lateral deformation are able to be generated, meanwhile structures are built in soft ground. Top-Base method is belonged to a rigidity mat foundation method which is used to surface treatment of soft ground. This method makes an effect to increase the bearing capacity of foundation using friction force, and prevent the differential settlement. Further more, the In-Situ Top-Base method has advantages in the phase of economic effect by reduction of the construction cost and offers an expediency on construction comparing with precast products. This paper presents the way of the estimation of bearing capacity for In-Situ Top-Base method through field plate load test in soft ground. It utilizes the results to a future design by analyzing the properties in the existing study and designs through these analysis and calculating the top-base method's reasonable range.

Numerical study of electromagnetic wave propagation characteristics in collapsed building for rescue radar applications

  • Kwon, Kyeol;Kim, Dong-Kyoo;Choi, Youngwoo;Cho, Jeahoon;Jung, Kyung-Young
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.546-553
    • /
    • 2018
  • Since the Gyeongju earthquakes in 2016, there have been increased research interests in the areas of seismic design, building collapse, and rescue radar applications in Korea. Ground penetrating radar (GPR) is a nondestructive electromagnetic method that is used for underground surveys. To properly design ground penetrating radar that detects buried victims precisely, it is important to study electromagnetic wave propagation channel characteristics in advance. This work presents an electromagnetic propagation environment analysis of a trapped victim for GPR applications. In this study, we develop a realistic collapse model composed of layered reinforced concrete and a victim positioned horizontally. In addition, the effects of rebars and the distance between the radar antenna and target are investigated. The numerical analysis presents the electromagnetic wave propagation characteristics, including amplitude loss and phase difference, in the 450-MHz and 1,500-MHz frequency band, and it shows the electric field distribution in the environment.