• Title, Summary, Keyword: phase error

Search Result 1,866, Processing Time 0.034 seconds

Error Rate Performance Variation by the Reception Phase Error in a Frequency-Selective Rayleigh Fading Channel Environment (주파수 선택성 레일리 페이딩 채널환경에서 수신 오차위상에 의한 오율 특성 변화)

  • 김용로;금홍식;류흥균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.9
    • /
    • pp.6-13
    • /
    • 1993
  • In is well-known that system performance in the high speed digital radio communication system is usually deteriorted due to the frequency selective fading distortion. In this paper, bit error rate(BER) performance by the reception phase error in cellular mobile communication systems is derived and analyzed. The system is modeled as a frequency selective fast Rayleigh fading channel corrupted by additive white gaussian noise(AWGN) and co-channel interference(CCI). Our numerical results show that for the 24KBaud(48Kb/s) $\pi$/4-DQPSK operated at carrier frequency 800 MHz and C/I<20 dB, the BER will be dominated by CCI if the vehicular speed is below 100 Km/h. The results show that performance, when reception phase error is below $\pi$/12, is deterioreted less than 3 dB, and that performance, when reception phase error is above $\pi$/12, is degraded over 3 dB.

  • PDF

Error analysis for time-in-flight laser range finder with multiple toe amplitude modulation

  • Matsumoto-Moriyama, Masao;Mima, Kazuhiko;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.554-557
    • /
    • 1993
  • The error analysis for the Time-in-Flight Laser Range Finder with Multiple Tone Amplitude Modulation relevant to the phase detection error is made. The distance can be estimated to solve the formulate which express the relationship between the absolute distance from the range finder to the object and the wavenumbers and the phases of the modulated waves by the optimization technique. The main cause of the estimation error can be considered as the phase detection error induced from the amplitude modulator and the phase detector. To clarify the phase detection error and the optimal amplitude frequency set, the numerical analysis are made.

  • PDF

A Broadband Digital Step Attenuator with Low Phase Error and Low Insertion Loss in 0.18-${\mu}m$ SOI CMOS Technology

  • Cho, Moon-Kyu;Kim, Jeong-Geun;Baek, Donghyun
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.638-643
    • /
    • 2013
  • This paper presents a 5-bit digital step attenuator (DSA) using a commercial 0.18-${\mu}m$ silicon-on-insulator (SOI) process for the wideband phased array antenna. Both low insertion loss and low root mean square (RMS) phase error and amplitude error are achieved employing two attenuation topologies of the switched path attenuator and the switched T-type attenuator. The attenuation coverage of 31 dB with a least significant bit of 1 dB is achieved at DC to 20 GHz. The RMS phase error and amplitude error are less than $2.5^{\circ}$ and less than 0.5 dB, respectively. The measured insertion loss of the reference state is less than 5.5 dB at 10 GHz. The input return loss and output return loss are each less than 12 dB at DC to 20 GHz. The current consumption is nearly zero with a voltage supply of 1.8 V. The chip size is $0.93mm{\times}0.68mm$, including pads. To the best of the authors' knowledge, this is the first demonstration of a low phase error DC-to-20-GHz SOI DSA.

Analysis of Effect of Phase Error Sources of Polarization Components in Incoherent Triangular Holography

  • Kim, Soo-Gil
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.256-262
    • /
    • 2012
  • We derive the point-spread function of the reconstructed image from a point-source complex hologram, which includes phase error caused by polarization components, in the longitudinal direction of the point-spread function and analyze the effect of the error sources of polarization components having influence on image reconstruction of a point-source complex hologram in incoherent triangular holography.

Effects of LDPC Code on the BER Performance of MPSK System with Imperfect Receiver Components over Rician Channels

  • Djordjevic, Goran T.;Djordjevic, Ivan B.;Ivanis, Predrag N.
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.619-621
    • /
    • 2009
  • In this letter, we study the influence of receiver imperfections on bit error rate (BER) degradations in detecting low-density parity-check coded multilevel phase-shift keying signals transmitted over a Rician fading channel. Based on the analytical system model which we previously developed using Monte Carlo simulations, we determine the BER degradations caused by the simultaneous influences of stochastic phase error, quadrature error, in-phase-quadrature mismatch, and the fading severity.

Interrelationship of phase-error variance and correlation coefficient in microwave imaging (마이크로웨이브 이미징에서 위상오차 분산과 코릴레이션 계수와의 상호관계)

  • 강봉순;장훈기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.1-6
    • /
    • 1997
  • This paper presents the theoretical derivaion relating and image correlationcoeffcient capable of assessing image quality, with phase-error variance in antenna aperture domain. We show that when the phase-error variance of a range bin selected as an adaptive beamformer is known, the quality of the reconstructed image is predictable and moreover, the resultant correlation coeffcient is obviously greater than the derive dlower boudn. To support the derivation, real data are used for image formation where the dominant scatterer algorithm (DSA) is applied for phase compensations.

  • PDF

The Error Rate Evaluation for Differential Demodulation of 2-h Continuous Phase Modulation (차동 복조 2-h 연속 위성 변조의 오류 확률)

  • 윤동원;한영열
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.29-35
    • /
    • 1994
  • The performance of continuous phase modulation signals is well known for the coherent demodulation. But the carrier recovery circuits of the coherent receiver have long acquisition time and the receiver experiences high error floors for fading channels. In this paper, we propose the differential demodulation of 2-h continuous phase modulation signals. The sets of modulation indices of 2-h phase codes adequate to the differential demodulation for differentially encoded input are obtained and the average bit error probability in Additive White Gaussian Noise environments is derived and analyzed.

  • PDF

A Study on Effects of Offset Error during Phase Angle Detection in Grid-tied Single-phase Inverters based on SRF-PLL (SRF-PLL을 이용한 계통연계형 단상 인버터의 전원 위상각 검출시 옵셋 오차 영향에 관한 연구)

  • Kwon, Young;Seong, Ui-Seok;Hwang, Seon-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.73-82
    • /
    • 2015
  • This paper proposes an ripple reduction algorithm and analyzes the effects of offset and scale errors generated by voltage sensor while measuring grid voltage in grid-tied single-phase inverters. Generally, the grid-connected inverter needs to detect the phase angle information by measuring grid voltage for synchronization, so that the single-phase inverter can be accurately driven based on estimated phase angle information. However, offset and scale errors are inevitably generated owing to the non-linear characteristics of voltage sensor and these errors affect that the phase angle includes 1st harmonic component under using SRF-PLL(Synchronous Reference Frame - Phase Locked Loop) system for detecting grid phase angle. Also, the performance of the overall system is degraded from the distorted phase angle including the specific harmonic component. As a result, in this paper, offset and scale error due to the voltage sensor in single-phase grid connected inverter under SRF-PLL is analyzed in detail and proportional resonant controller is used to reduce the ripples caused by the offset error. Especially, the integrator output of PI(Proportional Integral) controller in SRF-PLL is selected as an input signal of the proportional resonant controller. Simulation and experiment are performed to verify the effectiveness of the proposed algorithm.

An Analysis of Performance Error of Roundness Measuring Instrument -by phase different method- (眞圓度 測定器의 誤差特性에 대한 解析 -위상차법-)

  • 한응교;허문석;박익근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.31-37
    • /
    • 1988
  • A phase different method to evaluate the instrument error of roundness measuring instrument and the form error of specimens for the calibration of the instrument is used. An instrument with a rotary table supported by an air bearing was calibrated by using the standard balls as a standard. The calibration was carried out repeatedly by setting the same ball in 12 phase angles(per 30.deg.) on the table and by recording their roundness errors with a magnification of 100,000 times. As a result of data analysis of all the observations, readout at each of 144 orientations(per 2.5.deg.) from recorded data file, the error of performance of the instrument and the specimens are separated. In the particular instrument used in the present experiment, the error of the instrument was determined with the accuracy of 0.0164 (.mu.m) and the form error of the specimens was determined with the accuracy of 0.0264,0.0172(.mu.m), respectively. If the instrument was calibrated by using the above specimens, then the accuracy of the measurement of roundness error can be improved to about 0.017 (.mu.m).

  • PDF