• Title/Summary/Keyword: phase diversity

Search Result 192, Processing Time 0.025 seconds

A Performance Enhanced UHF RFID System with Modified I/Q Diversity Receiver

  • Jeon, Ki-Yong;Yoon, Chang-Seok;Cho, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.751-756
    • /
    • 2008
  • In this paper, we propose a modified I/Q diversity scheme receiver of UHF RFID reader system. The modified I/Q diversity receiver is more robust than the conventional homodyne receiver in the wireless noisy, fading channel and phase noise environments by making use of additional axes. In particular, it is shown that the closer the phase difference ${\theta}(t)$ between the reader and the tag to ${\pi}/4$, the larger performance improvement we can get. The performance of the proposed receiver is verified by equations and is demonstrated by the computer simulation for various difference ${\theta}(t)$ cases.

New Evaluation on Correlated MRC Diversity Reception for the Detection of Signals over Wireless Fading Channels

  • Kim, Chang-Hwan;Kim, Hyeong-Kyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.136-140
    • /
    • 2009
  • The performances of M-ary signals using L-branch maximum ratio combining (MRC) diversity reception in correlated Nakagami fading channels are derived theoretically. The coherent reception of M-ary differential phase shift keying (MDPSK), phase shift keying (MPSK), and quadrature amplitude modulation (MQAM) is considered. It is assumed that the fading parameters in each diversity branch are identical. The general formula for evaluating symbol error rate (SER) of M-ary signals in the independent branch diversity system is presented using the integral-form expressions. Until now, results did not extend to the various M-ary case for a coherent reception. The numerical results presented in this paper are expected to provide information for the design of radio system using M-ary modulation method for above mentioned channel environment.

  • PDF

A Scheme of Channel Diversity Load Balancing Consideration for Path Selection in WMNs

  • Gao, Hui;Kwag, Young-wan;Lee, Hyung-ok;Nam, Ji-seung
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.249-251
    • /
    • 2014
  • This paper proposes a channel diversity based load-balancing cross-layer routing scheme for Wireless Mesh Networks (WMNs). The proposed scheme deals with channel diversity phase and load balancing phase in WMNs. Channel diversity factor $metric_{ch-d}$ and load balancing factor $f_{load}$ are defined and employed cooperatively as a combined path selection policy.

A Study on Digital Phase-Frequency Modulation System for Mobile Radio Communications (디지틀 이동무선통신을 위한 위상일주파수 혼합 변조방식에 관한 연구)

  • 홍현성;조성준;김원후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.2
    • /
    • pp.122-136
    • /
    • 1986
  • In this paper, the new modulation system, the digital phase-frequency hybrid modulation system is proposed for mobile radio communications. The error rate and the outage equation of PFSK(Phase-Frequency Shift Keying) signal transmitted through the fading channel has been derived considiering deversity techniques. The error rate and the outgae rate performances of PFSK system have been evaluated and shown in figures in terms of carrier-to-noise power ratio(CNR), fading figure, numbers of diversity branches, correlation coefficient among the diversity branches. And the performance of PFSK system is superior to that of QDPSK system. And by using diversity techniques, system performances can be improved 13dB above in CNR.

  • PDF

Amplify-and-Forward Cooperative Diversity for Multiple Relays (다중 사용자를 위한 Amplify-and-Forward Cooperative Diversity)

  • Lee, Dong-Woo;Jung, Young-Seok;Lee, Jae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.83-84
    • /
    • 2006
  • In this paper, we introduce the AF cooperative diversity with multiple relays using phase feedback. Simulation results show that the proposed schemes obtain the diversity gain according to the number of the cooperating terminals. The performance of proposed scheme using tolerable quantized feedback is close to that of proposed scheme using full feedback.

  • PDF

Amplify-and-Forward Cooperative Diversity with Multiple Relays (다중 사용자를 위한 증폭재전송 협동 다이버시티 기법)

  • Lee, Dong-Woo;Jung, Young-Seok;Lee, Jae-Hong;Yeon, Seung-Ho;Lee, Mi-Sook;Yang, Jae-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.85-91
    • /
    • 2007
  • In this paper, we introduce the amplify-and-forward (AF) cooperative diversity with multiple relays using phase feedback. Simulation results show that the AF cooperative diversity with multiple relays using phase feedback not only provide the better performance than the direct transmission, but also obtain the diversity gain according to the number of the cooperating terminals. The performance of proposed scheme using tolerable feedback is close to optimal performance.

Performance Analysis of Frequency Diversity Scheme for OFDM Systems Using Sub-channel Correlation Characteristics (부채별 상관 특성을 이용한 OFDM 시스템의 주파수 다이버시티 기법 성능 분석)

  • 이종식;김장욱;오창헌;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.614-622
    • /
    • 2004
  • In this paper, we propose the frequency diversity scheme for performance improvement of a OFDM system without decreasing the spectral efficiency. In the proposed scheme, information bit is encoded to symbol by a simple procedure, and the encoded symbol is transmitted through the two lowest correlated sub-channels with the particular phase difference. At the receiver, a frequency diversity gain is obtained by a simple signal processing. We also suggest optimum phase difference value to minimize the performance degradation which resulted from a phase difference estimation error and bit/symbol mapping method to minimize BER. As results, at the point of performance improvement, the proposed scheme is excellent even though it requires a little increase of system complexity because of an additional encoding and decoding. In particular, we confirmed through computer simulation that on the same channel environment and bandwidth efficiency, the 27x/1Rx STBC-OFDM system adopting the proposed frequency diversity scheme outperforms the conventional 27x/1Rx STBC-OFDM system performance

Performance Analysis of DS/CDMA with Phase Error Using Hybrid SC/MRC Diversity (위상을 고려한 DS/CDMA 시스템에서 Hybrid SC/MRC 다이버시티 기법을 이용한 성능분석)

  • 김원섭;박진수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.355-362
    • /
    • 2003
  • In this paper, we analyzed the DS/CDMA System with Hybrid SC/MRC diversity, as a method to achieve a good performance by reducing the complexity of system, when PLL gain value was revised a phase gulf among branches to make perfect coherent receive signal. The channel is a multipath Nakagami-m fading channel, we consider user(K), processor gain(N), number of paths(Lp) in DS/CDMA system with hybrid SC/MRC diversity. We found that PLL gain values exist to make perfect coherent receive signal. We verified that DS/CDMA system with Hybrid SC/MRC diversity can improve performance when the proper PLL gain values is used in the system. As a result, we verified that the upper limit of PLL gain value is 5dB to make perfect coherent receive signal in the DS/CDMA system with hybrid SC/MRC diversity.

Performance Analysis of 16 star-QAM with Diversity Reception in Microcell Systems (마이크로셀 시스템에서 다양성 기법을 도입한 16 star-QAM의 성능 해석)

  • 지수복;고봉진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.1-9
    • /
    • 2000
  • This paper presents the error performance of 16 star-QAM with diversity reception in microcell systems in the presence of additive white Gaussian noise(AWGN) and cochannel interference. The differential detection of 16 star-QAM is split into phase detection and amplitude detection. This technique can reduce the degradation of error performance which is due to fading and the complexity of receiver. Diversity reception is proposed to improve the degradation of error performance due to fading. Equal gain and maximal ratio combinings were adopted for the phase detection and the amplitude detection, respectively. The performance of 16 star-QAM was evaluated for various of Rician factor K, maximum Doppler frequency f_DT, signal to cochannel interference ratio and diversity branch L.

  • PDF

Performance Analysis of MC-DS/CDMA System with Phase Error and Hybrid SC/MRC-(2/3) Diversity (위상 에러와 하이브리드 SC/MRC-(2/3)기법을 고려한 MC-DS/CDMA 시스템의 성능 분석)

  • Kim Won-Sub;Park Jin-Soo
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.835-842
    • /
    • 2004
  • In this paper, we have analyzed the MC-DS/CDMA system with input signal synchronized completely through adjustment of the gain in the PLL loop, by using the hybrid SC/MRC-(2/3) technique, which is said to one of the optimal diversity techniques under the multi-path fading environment, assuming that phase error is defined to the phase difference between the received signal from the multi-path and the reference signal in the PLL of the receiver. Also, assuming that the regarded radio channel model for the mobile communication is subject to the Nakagami-m fading channel, we have developed the expressions and performed the simulation under the consideration of various factor, in the MC/DS-CDMA system with the hybrid SC.MRC-(2/3) diversity method, such as the Nakagami fading index(m), $the\;number\;of\;paths\;(L_p),$ the number of hybrid SC.MRC-(2/3) $diversity\;branches\;(L,\;L_c),$ the number of users (K), the number of subcarriers (U), and the gain in the PLL loop. As a result of the simulation, it has been confirmed that the performance improvement of the system can be achieved by adjusting properly the PLL loop in order for the MC/DS-CDMA system with the hybrid SC/MRC-(2/3) diversity method to receive a fully synchronized signal. And the value of the gain in the PLL loop should exceed 7dB in order for the system to receive the signal with prefect synchronization, even though there might be a slight difference according to the values of the fading index and the spread processing gain of the subcarrier.