• Title/Summary/Keyword: phase array antenna

Search Result 245, Processing Time 0.027 seconds

Phase Tracking Settling Time and BER Performance Evaluation in the Digital Retrodirective Array Antenna System (디지털 역지향성 배열 안테나 시스템에서 위상 추적 Settling 시간과 BER 성능 평가)

  • Kim, So-Ra;Lee, Seung Hwan;Shin, Dong Jin;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Digital retrodirective antenna system is easy to modify and upgrade because it can control the phase information of the output signal toward opposite direction to input signal without a priori knowledge of the arrival direction. Due to this advantage, it is possible to do fast beam tracking. Especially, we need to design the digital PLL performance for the digital retrodirective array antenna system. So, in this paper the settling time of phase estimator and BER performance of retrodirective antenna system are investigated according to design of filter in digital PLL. When QAM signal is used for 1 Mbps with $30^{\circ}$ of phase delay, simulation results show that digital phase conjugation technique has better BER performance by about 1 dB than non-phase conjugation system when digital filter is stable. If not, the system can't estimate the exact phase because of oscillation of filter.

The design of Horn array antenna for 28GHz millimeter wave band (28GHz 밀리미터파대역 혼 어레이 안테나 설계)

  • Jin, Duck-Ho;Lee, Je-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1672-1678
    • /
    • 2022
  • In this paper, the relay antenna was designed in consideration of the performance of the 28GHz band 5G mobile communication relay horn antenna, such as radiation pattern and return loss. A horn array for 5G mobile communication repeater was designed by arranging the antenna elements in phase, and the performance was analyzed. Unlike conventional WCDMA (3G) and LTE (4G), in millimeter wave band communication, high path loss occurs between transmission and reception. In the design of a 5G millimeter wave horn antenna, antenna performance such as isolation and gain between antenna elements as well as gain and bandwidth of the antenna must be additionally considered. The antenna gain of the single horn antenna (1×1) and the array horn antenna (2×4) in the 28GHz band is about 10.44d Bi and 19.58dBi, respectively, and the return loss is designed to be less than -18dB. It has proven its validity and has been shown to be suitable for application to 5G mobile communication relay system.

A design of a circular phased-array antenna with microstrip slots (마이크로스트립 슬로트의 원형 위상배열 안테나 설계)

  • 임계재;고성선;윤현보
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.1
    • /
    • pp.46-54
    • /
    • 1991
  • A noble phased-array antenna of the circular form with microstrip slots was designed for steering the radiation beam and increasing the directivity and gain. The directivity and gain could be controlled, varying the number of slots and the radius of a circle, but here, the 40 .deg. beam scanning antenna system was achieved by tangentially arranging 4 mi- crostrip slots on a circumference and the analog phase shifter was used to adjust phase difference in the adjacent elements. And such a system has a microstrip configuration taking the effects of the line dispersion and discontinuities into account at 10 Ghz. The experimental results were fairly agreed with theoretical values, and this circular phased array had an improved performance over the rectangular phased array with 64-microstrip patches in a view of the number of array elements.

  • PDF

Optimization Study of Antenna Launching Condition for Efficient FWCD in KT-2 Tokamak

  • B.G. Hong;Kim, S.K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.413-418
    • /
    • 1996
  • To derive the optimimum antenna launching condition for fast wave current drive, the propagation and absorption of the ion cyclotron range of frequencies waves are studied in a KT-2 tokamak plasma. We sove the kinetic wave equation in one dimensional slab geometry with the phase-shifted antenna array to inject the toroidal momentum to electrons. The accessibility conditions and the guidelines of the optimum antenna design for the efficient current drive are derived. The dependence of the current drive efficiency on launching conditions such as the phase and spacing Is presented.

  • PDF

Design of adaptive array antenna utilizing modified on-off algorithm and its real-time implementation on a general-purpose DSP (개선된 On-Off 앨고리듬을 이용한 적응 배열 안테나의 설계와 범용 DSP를 이용한 실시간 구현)

  • 염재흥;안성수;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.997-1005
    • /
    • 1998
  • This paper presents a modified on-off algorithm based on the gradient method for providing the phase of each antenna element more accurately and simply compared to the conventional on-off algorithm. The sup4erisority of theproposed method is due to the fact that the proposed method finds the increase and decrease of the array output power more accurately by utilizing the gradient of array output power with respect to the instantaneous phase of array element. The array antenna adopting to the proposed method formsmaximum beam-pattern along the direction of the desired signal by aligning the phase of every antenna enement. The proposed method is applied to both linear and two-dimentional aray for analyzing the result. The capability of the real-time processing of the proposed technique is confirmed by implementing the proposed algorithm with TMS320C30 Evaluation Module. Since the computational load required to form the beam-pattern per snapshot is small, the proposed method is suitable for the mobile communication system of which the response must be fast. By the results obtained from the application of the proposed method to the CDMA mobile communication environment, it is vreified that the performance of the received signal is consideralbly improved.

  • PDF

Parameter Estimation for Multipath Error in GPS Dual Frequency Carrier Phase Measurements Using Unscented Kalman Filters

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Kang, Tea-Sam;Jee, Gyu-In;Kim, Jeong-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.388-396
    • /
    • 2007
  • This paper describes a multipath estimation method for Global Positioning System (GPS) dual frequency carrier phase measurements. Multipath is a major error source in high precision GPS applications, i.e., carrier phase measurements for precise positioning and attitude determinations. In order to estimate and remove multipath at carrier phase measurements, an array GPS antenna system has been used. The known geometry between the antennas is used to estimate multipath parameters. Dual frequency carrier phase measurements increase the redundancy of measurements, so it can reduce the number of antennas. The unscented Kalman filter (UKF) is recently applied to many areas to overcome some of the limitations of the extended Kalman filter (EKF) such as weakness to severe nonlinearity. This paper uses the UKF for estimating multipath parameters. A series of simulations were performed with GPS antenna arrays located on a straight line with one reflector. The geometry information of the antenna array reduces the number of estimated multipath parameters from four to three. Both the EKF and the UKF are used as estimation algorithms and the results of the EKF and the UKF are compared. When the initial parameters are far from true parameters, the UKF shows better performance than the EKF.

Development of Four-Way Analog Beamforming Front-End Module for Hybrid Beamforming System

  • Cho, Young Seek
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.4
    • /
    • pp.254-259
    • /
    • 2020
  • Phased-array antennas comprise a demanding antenna design methodology for commercial wireless communication systems or military radar systems. In addition to these two important applications, the phased-array antennas can be used in beamforming for wireless charging. In this study, a four-way analog beamforming front-end module (FEM) for a hybrid beamforming system is developed for 2.4 GHz operation. In a hybrid beamforming scheme, an analog beamforming FEM in which the phase and amplitude of RF signal can be adjusted between the RF chain and phased-array antenna is required. With the beamforming and beam steering capability of the phased-array antennas, wireless RF power can be transmitted with high directivity to a designated receiver for wireless charging. The four-way analog beamforming FEM has a 32 dB gain dynamic range and a phase shifting range greater than 360°. The maximum output RF power of the four-way analog beamforming FEM is 40 dBm (=10 W) when combined the four individual RF paths are combined.

Design of 5.8GHz Band 4×4 Butler Matrix using Commercial 90° Hybrid Coupler (상용 90도 하이브리드 커플러를 이용한 5.8GHz 대역 4×4 버틀러매트릭스 설계)

  • Park, Byeong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.200-205
    • /
    • 2014
  • In this paper, 5.8GHz band $4{\times}4$ Butler matrix is designed using easily accessible commercial $90^{\circ}$ hybrid coupler and semirigid coaxial cable as a transmission line. This Butler matrix is very flexible to changes of antenna system specification like a frequency band because $90^{\circ}$ hybrid coupler changing is all to do. The result of design is the distance of $2{\times}2$ array antenna element is $\sqrt{2}{\lambda}/4$, the 4 beam directions are diagonal of array antenna and phase shifter is not necessary. The beam width is roughly $25^{\circ}$ narrower because of array antenna geometry and the side lobe is about 10dB higher partially than theoretical beam pattern. But the overall beam pattern is similar with theoretical beam. This Butler matrix can be applied to switching beam antenna of 5.8GHz band Wi-Fi and WAVE system.

A Study on the Performance Digital Beamforming using Antenna Error Correction and Modified Optimum Weight for Improved Signal Estimation (향상된 신호 추정을 위한 안테나 오차 보정 과 수정된 최적 가중치를 이용한 디지털 빔 형성 성능 분석에 관한 연구)

  • Cho, Sung Kuk;Lee, Jun Dong;Yang, Gill Mo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.63-70
    • /
    • 2014
  • Method a target estimation in spatial are mobile wireless communication using network cell and GPS. It have much error that mobile wireless communication depend on cell size. GPS method can't find a target in shadow and inner area. In this paper, we estimate a target as direction of arrival method using adaptive array antenna system. Adaptive array antenna system can obtain desired signal to remove other signal This paper studied digital beamforming method in order to estimation a target. Proposed method is modified optimum weight and antenna error correction to estimation an optimal receive signal. Digital beamforming method decided a signal phase and amplitude from received signal on array antenna element. But if it is not to do error correction of received signal, system performance have decreased. Firstly, we proposed modified optimum weight in order to finding desired target. Secondly, we are error correction of antenna incident signals by optimal weight before digital beamforming method. Thirdly, throughly simulation, we showed that system performance of proposed method compare proposal method with general method. It have improved resolution of estimation target to good performance more proposed method than general method.

Calibration Method of Channels' Initial Phase Shift in Active Phased Array Antenna (능동 위상배열 안테나 채널의 초기위상 천이 보정 방법)

  • Mun, Yeong-Chan;Park, Chan-Gu;Pyo, Cheol-Sik;Jeon, Sun-Ik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.7
    • /
    • pp.18-23
    • /
    • 2000
  • An active phased away antenna consists of many channels including radiator and active circuitary that contains low noise amplifiers and phase shifters. Each channel has different initial phase shift and gain because of inequality in active circuitary itself, interface between radiator and active circuitary, beam forming network and other antenna configurations. This is an inherent problem in active phased away antenna, therefore each channels' initial phase shifts and gains should be calibrated for obtaining the designed radiation pattern and antenna gain. In this paper, an efficient calibration method for the active phased array antenna is presented. By performing the above method, thhe antenna gain is increased more than 2.0 dB after calibrating considerably unequal 12 channels' initial phase shifts and gains.

  • PDF