• Title/Summary/Keyword: phase 2 enzymes

Search Result 193, Processing Time 0.026 seconds

GENETIC POLYMORPHISMS OF THE GLUTATHIONE S-TRANSFERASE AND CYP1A1 GENES IN KOREAN ORAL SQUAMOUS CELL CARCINOMA (한국인 구강 편평세포암에서 Glutathione S-transferase와 CYP1A1 유전자의 다형성)

  • Cha, In-Ho;Kwon, Jong-Jin;Park, Kwang-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.5
    • /
    • pp.364-371
    • /
    • 2002
  • Many chemical compopunds are converted into reactive electrophilic metabolites by the oxidative(Phase I) enzymes, which are mainly cytochrome P-450 enzyme(CYPs). Phase II conjugating enzymes, such as glutathione S-transferase(GST), usually act as inactivation of enzymes. Genetic polymorphisms have been found to be associated with increased susceptibility to cancer of the lung, bladder, breast and colorectal. Many of the polymorphic genes of carcinogen metabolism show considerably different type of cancer among different ethnic groups as well as individuals within the same group. The aim of this study is (1) to establish the frequencies of genetic polymorphisms of GSTM1 and CYP1A1 in Korean oral squamous cell carcinoma(SCC), (2) to associate oral SCC with the risk of these genetic polymorphisms. The genetic polymorphisms of the GSTM1 and the CYP1A1 genes among 50 Korean oral SCC were analyzed using polymerase chain reaction(PCR). The results suggest that the homozygote and the mutant type of CYP1A1 MspI polymorphisms may be associated with genetic susceptibility to oral SCC in Korean. A combination of the GSTM1 null type with the homozygote(m1/m1), and the mutant(m2/m2) type of CYP1A1 MspI polymorphisms showed a relatively high risk of oral SCC in Korean. In the smoking group, the GSTM1 wild genotype may be the high risk factor of oral SCC in Korean. These data coincide with the hypothesis which states that different susceptibility to cancer of genetic polymorphisms exist among different ethnic group and different types of human cancer.

Bioactivities of Sulfur Compounds in Cruciferous Vegetables

  • Kim Mee-Ree
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.150-157
    • /
    • 2004
  • Cruciferous vegetables are rich in organosulfur compounds such as isothiocyanates and sulfides. While the isothiocyanates, corresponding to pungent principle, are generated from myrosinase-catalyzed hydrolysis of glucosinolates, the sulfides can be generated non-enzymatically. Recent studies provide evidences that some sulfur compounds in these vegetables show a chemopreventive action against carcinogenesis; while isothiocyanates such as sulforaphane induce phase 2 enzymes (glutathione S-transferase/quinone reductase), disulfides tends to elevate the level of phase 1 and 2 enzymes. Especially, sulforaphane rich in Cruciferae vegetables has been reported to express anticarcinogenic effect in some organs such as liver, kidney or intestine. When the level of sulfur compounds in Cruciferous and Alliaceous vegetables was determined by GC/MS (SIM), the richest in sulforaphane is broccoli followed by turnip, cabbage, radish, kale, cauliflower and Chinese cabbage. Meanwhile, the sulfides are predominant in Alliaceous vegetables such as onion. In related study, the administration of vegetable extract elevated the GST level by 1.5 fold for broccoli, 1.4 fold for radish, and 1.3 for onion. Thus, the vegetables frequently used in Korean dish contain relatively high amount of anticarcinogenic sulfur compounds. Moreover, the combination of broccoli and radish extracts elevated the GST induction up to 1.84 folds of control. In addition, the Kakdugi, fermented radish Kimchi was observed to show a comparable GST induction despite the decomposition of methylthio-3-butenylisothiocyanate (MTBI). Therefore, the combination of vegetables including broccoli, and fermented radish Kimchi would be useful as a functional food for chemoprevention.

  • PDF

Sulforaphane is Superior to Glucoraphanin in Modulating Carcinogen-Metabolising Enzymes in Hep G2 Cells

  • Abdull Razis, Ahmad Faizal;Noor, Noramaliza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4235-4238
    • /
    • 2013
  • Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 ${\mu}M$) for 24 hours. Glucoraphanin at higher concentration (25 ${\mu}M$) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 ${\mu}M$. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen-metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.

Induction of Quinone Reductase and Glutathione S-Transferase in Murine Hepatoma Cells by Flavonoid Glycosides

  • Kim, Jung-Hyun;Lee, Jeong-Soon;Kim, Young-Chan;Chung, Shin-Kyo;Kwon, Chong-Suk;Kim, Young-Kyoon;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.365-371
    • /
    • 2003
  • The potential of seven flavonoid glycosides to induce quinone reductase (QR), an anticarcinogenic marker enzyme, in murine hepatoma cells (hepalc1c7) and its mutant cells (BPRc1) was evaluated. Among test compounds, kaempferol-3-O-glucoside, luteolin-6-c-glucoside, and quercetin-3-O-glucoside (Q-3-G) induced QR in hepalc1c7 cells in a dose-dependent manner. However, in BPRc1 cells lacking arylhydrocarbon receptor nuclear translocator (ARNT), only Q-3-G caused a significant induction of quinone reductase at the concentration range of 0.5 to 8 ug/mL, suggesting that it is a monofunctional inducer. Q-3-G induced not only phase 2 enzymes, including QR and glutathione-S-transferase, but also nitroblue tetrazolium reduction activity in HL-60 cells, a biochemical marker for cell differentiation promoting agents. In conclusion, Q-3-G merits further study to evaluate its cancer chemopreventive potential.

Purification and Characterization of Intracellular and Extracellular Inulase from Kluyveromyces marxianus (Kluyveromyces marxianus 가 생산하는 Intracellular 및 Extracellular Inulase 의 정제 및 특성비교)

  • Kim, Su-Il;Moon, Hang-Sik
    • Applied Biological Chemistry
    • /
    • v.30 no.2
    • /
    • pp.169-178
    • /
    • 1987
  • The extracellular and intracellular inulases from Kluyveromyces marxianus were purified and characterized. The maximum production of both inulases was achieved at stationary phase in a pH-controlled medium at pH 5 with yeast nitrogen base as organic nitrogen source. Each enzyme was concentrated by tannic acid precipitation and separated into two fractions by DEAF-cellulose chromatography. Electrophoretic analysis showed that the four fractions had three glycoprotein bards each. Only main glycoprotein band, however, had both inulase and invertase activities. There were no significant differences between two enzymes in the optimum pH and temperature. But the intracellular inulases had higher heat stability and less affinity toward inulin than the extracellular enzymes do. All the purified enzymes were considered to be exo-inulases using hydrolyzate analysis with TLC.

  • PDF

Saffron Reduction of 7,12-Dimethylbenz[a]anthracene-induced Hamster Buccal Pouch Carcinogenesis

  • Manoharan, Shanmugam;Wani, Shamsul Afaq;Vasudevan, Krishnamoorthy;Manimaran, Asokan;Prabhakar, Murugaraj Manoj;Karthikeyan, Sekar;Rajasekaran, Duraisamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.951-957
    • /
    • 2013
  • Our aim was to investigate the chemopreventive potential of saffron in DMBA-induced hamster buccal pouch carcinogenesis. Assessment was by monitoring the percentage of tumor bearing hamsters, tumor size as well as the status of detoxification agents, lipid peroxidation and antioxidants. Oral squamous cell carcinomas were induced in the buccal pouch of Syrian golden hamsters by painting them with 0.5% DMBA in liquid paraffin three times a week for 14 weeks. We observed 100% oral tumor formation with severe histopathological abnormalities in all the hamsters treated with DMBA alone, activities of phase I and phase II detoxification enzymes, lipid peroxidation and antioxidants being significantly altered. Though oral administration of saffron completely prevented the formation of tumors, we noticed severe hyperplasia and dysplasia in hamsters treated with DMBA, suggesting that tumors might eventually develop. Oral administration of saffron return detoxification enzymes, lipid peroxidation and antioxidants to normal ranges. The chemopreventive potential of saffron thus is likely due to antioxidant properties and modulating effects on detoxification in favour of the excretion of carcinogenic metabolites during DMBA-induced hamster buccal pouch carcinogenesis.

Synthesis of 2-(Allylthio)pyrazines As a Novel Cancer Chemopreventive Agent

  • Lee, Jong-Wook;Lee, Bong-yong;Kim, Nak-Doo
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.16-20
    • /
    • 2001
  • 2-(Allylthio)pyrazine derivatives were designed as a novel cancer chemopreventive agent that functions through selective inhibtion of cytochrome P-450 and induction of phase 11 enzymes involved in the detoxification of carcinogens. A practical preparation method of 2-(allylthio) pyrazine derivatives was established by the reaction of 2-mercaptopyrazine and allylbromides in the presence of a catalytic antioxidant, DABCO (1,4-diazabicyclo[2,2,2] octane), in dimethyl-formamide at below $50^{\circ}C$.

  • PDF

Differential Expression of Xenobiotic-Matabolizing Enzymes by Benzylisothiazole in Association with Hepatotoxicity: Effects on Rat Hepatic Epoxide Hydrolase, Glutathione S-Transferases and Cytochrome P450s

  • Cho, Min- Kyung;Kim, Sang-Geon
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.293-300
    • /
    • 1998
  • Previous studies have shown that the heterocycles including thiazoles are efficacious in inducing phase phase II metabolizing enzyme as well as certain cytochrome P450s and that the inductin of these matabolizing enzymes by the heterocyclic agents is highly associated with their hepatotoxicity. In the present study, the effects of benzylisothiazole (BIT), which has a isothiazole moiety, on the expression of microsomal epoxide hydrolase (mEH), major glutathione S-transerases and cytochrome P450s were studied in the rat liver in association with its hepatotoxicity. Treatment of rats with BIT(1.17 mmol/kg, 1~3d) resulted in substantial increases in the mEH. rGSTA2, rGSTA2, rGSTM1 and rGSTM2 mRNA levels, whereas rGSTA3 and rGSTA5 mRNA levels were increased to much lesser extents. A time-course study showed that the mRNA levels of mEH and rGSTs were greater at 24hr after treatment than those after 3 days of consecutive treatment. Relative changes in mEH and rGST mRNA levels were consistent with those in the proteins, as assessed by Western immunoblot analysis. Hepatic cytochrom P450 levels were monitored after BIT treatment under the assumption that metabolic activation of BIT may affect expression of the enzymes in conjunction with hepatotoxicity. Immunoblot analysis revealed that cytochrome P450 2B1/2 were 3-to 4-fold induced in rats teatd with BIT(1.17 mmol/kg/day.3days), whereas P450 1A2, 2C11 and 3A1/2 levels were decreased to 20~30% of those in unteatd rats. P450 2E1 was only slightly decreased by BIT. Thus, the levels of several cytochrome P450s were suppressed by BIT treatment. Rats treated with BIT at the dose of 1.17mmol/kg for 3 days exhibited extensive multifocal nodular necrosis with moderate to extensive diffuse liver cell degeneration. No notable toxicity was observed in the kidney. These results showed that BIT induces mEH and rGSTs in the liver with increases in the mRNA levels, whereas the agent significantly decreased major cytochrome P450s. The changes in the detoxifying enzymes might be associated with the necrotic liver after consecutive treatment.

  • PDF

Induction of Anticarcinogenic Enzymes by Dichloromethane-soluble Fraction of Physalis alkekengi var. francheti Hort. in Mouse Hepatoma Cells

  • Seo, JiYeon;Kim, Hyo Jung;Kim, Jong-Sang
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.119-124
    • /
    • 2014
  • Physalis alkekengi var. francheti Hort. is known as an insecticide and traditional remedy for liver related diseases. Therefore, this study investigated the chemopreventive effects of extracts and several solvent fractions (n-hexane, dichloromethane, n-butanol, water) of Physalis alkekengi var. francheti Hort. First, their cytotoxicity and NQO1 activity were measured using an MTT assay, plus a quinone reductase [NAD(P)H dehydrogenase (quinone); NAD(P)H: (quinone acceptor) oxidoreductase, EC 1.6.99.2]-inducing activity assay was performed using cultured murine hepatoma cells (Hepa1c1c7) and its mutant cells(BpRc1). The reduction of electrophilic quinones by NQO1 is an important detoxification pathway and major mechanism of chemoprevention. When compared with the other solvent soluble fractions with different polarities, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. showed a higher NQO1-inducing activity that was also dose-dependent. Moreover, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. induced ARE-luciferase activities in HepG2-C8 cells that were generated by transfecting the ARE-luciferase gene construct, suggesting the Nrf2-ARE-mediated induction of anti-oxidative enzymes. In conclusion, the dichloromethane-soluble fraction of Physalis alkekengi var. francheti Hort. showed a relatively strong induction of detoxifying enzymes, thereby meriting further study to identify the active components and evaluate their potential as cancer preventive agents.

Isoforms of Glucose 6-Phosphate Dehydrogenase in Deinococcus radiophilus

  • Sung, Ji-Youn;Lee, Young-Nam
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.318-325
    • /
    • 2007
  • Glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in Deinococcus radiophilus, an extraordinarily UV-resistant bacterium, was investigated to gain insight into its resistance as it was shown to be involved in a scavenging system of superoxide $(O_2^{-1})$ and peroxide $(O_2^{-2})$ generated by UV and oxidative stresses. D. radiophilus possesses two G6PDH isoforms: G6PDH-1 and G6PDH-2, both showing dual coenzyme specificity for NAD and NADP. Both enzymes were detected throughout the growth phase; however, the substantial increase in G6PDH-1 observed at stationary phase or as the results of external oxidative stress indicates that this enzyme is inducible under stressful environmental conditions. The G6PDH-1 and G6PDH-2 were purified 122- and 44-fold (using NADP as cofactor), respectively. The purified G6PDH-1 and G6PDH-2 had the specific activity of 2,890 and 1,033 U/mg protein (using NADP as cofactor) and 3,078 and 1,076 U/mg protein (using NAD as cofactor), respectively. The isoforms also evidenced distinct structures; G6PDH-1 was a tetramer of 35 kDa subunits, whereas G6PDH-2 was a dimer of 60kDa subunits. The pIs of G6PDH-1 and G6PDH-2 were 6.4 and 5.7, respectively. Both G6PDH-1 and G6PDH-2 were inhibited by both ATP and oleic acid, but G6PDH-1 was found to be more susceptible to oleic acid than G6PDH-2. The profound inhibition of both enzymes by ${\beta}-naphthoquinone-4-sulfonic$ acid suggests the involvement of lysine at their active sites. $Cu^{2+}$ was a potent inhibitor to G6PDH-2, but a lesser degree to G6PDH-1. Both G6PDH-1 and G6PDH-2 showed an optimum activity at pH 8.0 and $30^{\circ}C$.