• Title/Summary/Keyword: pharmacological chaperone

Search Result 3, Processing Time 0.014 seconds

Fabry disease: current treatment and future perspective

  • Han-Wook Yoo
    • Journal of Genetic Medicine
    • /
    • v.20 no.1
    • /
    • pp.6-14
    • /
    • 2023
  • Fabry disease (FD), a rare X-linked lysosomal storage disorder, is caused by mutations in the α-galactosidase A gene gene encoding α-galactosidase A (α-Gal A). The functional deficiency of α-Gal A results in progressive accumulation of neutral glycosphingolipids, causing multi-organ damages including cardiac, renal, cerebrovascular systems. The current treatment is comprised of enzyme replacement therapy (ERT), oral pharmacological chaperone therapy and adjunctive supportive therapy. ERT has been introduced 20 years ago, changing the outcome of FD patients with proven effectiveness. However, FD patients have many unmet needs. ERT needs a life-long intravenous therapy, inefficient bio-distribution, and generation of anti-drug antibodies. Migalastat, a pharmacological chaperone, augmenting α-Gal A enzyme activity only in patients with mutations amenable to the therapy, is now available for clinical practice. Furthermore, these therapies should be initiated before the organ damage becomes irreversible. Development of novel drugs aim at improving the clinical effectiveness and convenience of therapy. Clinical trial of next generation ERT is underway. Polyethylene glycolylated enzyme has a longer half-life and potentially reduced antigenicity, compared with standard preparations with longer dosing interval. Moss-derived enzyme has a higher affinity for mannose receptors, and seems to have more efficient access to podocytes of kidney which is relatively resistant to reach by conventional ERT. Substrate reduction therapy is currently under clinical trial. Gene therapy has now been started in several clinical trials using in vivo and ex vivo technologies. Early results are emerging. Other strategic approaches at preclinical research level are stem cell-based therapy with genome editing and systemic mRNA therapy.

Dictyostelium discoideum Ax2 as an Assay System for Screening of Pharmacological Chaperones for Phenylketonuria Mutations

  • Kim, Yu-Min;Yang, Yun Gyeong;Kim, Hye-Lim;Park, Young Shik
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.782-787
    • /
    • 2015
  • In this study, we developed an assay system for missense mutations in human phenylalanine hydroxylases (hPAHs). To demonstrate the reliability of the system, eight mutant proteins (F39L, K42I, L48S, I65T, R252Q, L255V, S349L, and R408W) were expressed in a mutant strain (pah-) of Dictyostelium discoideum Ax2 disrupted in the indigenous gene encoding PAH. The transformed pah - cells grown in FM minimal medium were measured for growth rate and PAH activity to reveal a positive correlation between them. The protein level of hPAH was also determined by western blotting to show the impact of each mutation on protein stability and catalytic activity. The result was highly compatible with the previous ones obtained from other expression systems, suggesting that Dictyostelium is a dependable alternative to other expression systems. Furthermore, we found that both the protein level and activity of S349L and R408W, which were impaired severely in protein stability, were rescued in HL5 nutrient medium. Although the responsible component(s) remains unidentified, this unexpected finding showed an important advantage of our expression system for studying unstable proteins. As an economic and stable cell-based expression system, our development will contribute to mass-screening of pharmacological chaperones for missense PAH mutations as well as to the in-depth characterization of individual mutations.

TRAP1 regulation of mitochondrial life or death decision in cancer cells and mitochondria-targeted TRAP1 inhibitors

  • Kang, Byoung-Heon
    • BMB Reports
    • /
    • v.45 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Hsp90 is one of the most conserved molecular chaperones ubiquitously expressed in normal cells and over-expressed in cancer cells. A pool of Hsp90 was found in cancer mitochondria and the expression of the mitochondrial Hsp90 homolog, TRAP1, was also elevated in many cancers. The mitochondrial pool of chaperones plays important roles in regulating mitochondrial integrity, protecting against oxidative stress, and inhibiting cell death. Pharmacological inactivation of the chaperones induced mitochondrial dysfunction and concomitant cell death selectively in cancer cells, suggesting they can be target proteins for the development of cancer therapeutics. Several drug candidates targeting TRAP1 and Hsp90 in the mitochondria have been developed and have shown strong cytotoxic activity in many cancers, but not in normal cells in vitro and in vivo. In this review, recent developments in the study of mitochondrial chaperones and the mitochondria-targeted chaperone inhibitors are discussed.